↓ Skip to main content

Finite-Size Effects on Traveling Wave Solutions to Neural Field Equations

Overview of attention for article published in The Journal of Mathematical Neuroscience, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
9 Mendeley
Title
Finite-Size Effects on Traveling Wave Solutions to Neural Field Equations
Published in
The Journal of Mathematical Neuroscience, July 2017
DOI 10.1186/s13408-017-0048-2
Pubmed ID
Authors

Eva Lang, Wilhelm Stannat

Abstract

Neural field equations are used to describe the spatio-temporal evolution of the activity in a network of synaptically coupled populations of neurons in the continuum limit. Their heuristic derivation involves two approximation steps. Under the assumption that each population in the network is large, the activity is described in terms of a population average. The discrete network is then approximated by a continuum. In this article we make the two approximation steps explicit. Extending a model by Bressloff and Newby, we describe the evolution of the activity in a discrete network of finite populations by a Markov chain. In order to determine finite-size effects-deviations from the mean-field limit due to the finite size of the populations in the network-we analyze the fluctuations of this Markov chain and set up an approximating system of diffusion processes. We show that a well-posed stochastic neural field equation with a noise term accounting for finite-size effects on traveling wave solutions is obtained as the strong continuum limit.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 56%
Professor 1 11%
Student > Ph. D. Student 1 11%
Student > Postgraduate 1 11%
Unknown 1 11%
Readers by discipline Count As %
Mathematics 3 33%
Physics and Astronomy 1 11%
Social Sciences 1 11%
Medicine and Dentistry 1 11%
Unknown 3 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2017.
All research outputs
#15,749,194
of 25,385,509 outputs
Outputs from The Journal of Mathematical Neuroscience
#31
of 79 outputs
Outputs of similar age
#179,609
of 326,054 outputs
Outputs of similar age from The Journal of Mathematical Neuroscience
#2
of 3 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 79 research outputs from this source. They receive a mean Attention Score of 2.7. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,054 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.