↓ Skip to main content

A new algorithm to extract hidden rules of gastric cancer data based on ontology

Overview of attention for article published in SpringerPlus, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
37 Mendeley
Title
A new algorithm to extract hidden rules of gastric cancer data based on ontology
Published in
SpringerPlus, March 2016
DOI 10.1186/s40064-016-1943-9
Pubmed ID
Authors

Seyed Abbas Mahmoodi, Kamal Mirzaie, Seyed Mostafa Mahmoudi

Abstract

Cancer is the leading cause of death in economically developed countries and the second leading cause of death in developing countries. Gastric cancers are among the most devastating and incurable forms of cancer and their treatment may be excessively complex and costly. Data mining, a technology that is used to produce analytically useful information, has been employed successfully with medical data. Although the use of traditional data mining techniques such as association rules helps to extract knowledge from large data sets, sometimes the results obtained from a data set are so large that it is a major problem. In fact, one of the disadvantages of this technique is a lot of nonsense and redundant rules due to the lack of attention to the concept and meaning of items or the samples. This paper presents a new method to discover association rules using ontology to solve the expressed problems. This paper reports a data mining based on ontology on a medical database containing clinical data on patients referring to the Imam Reza Hospital at Tabriz. The data set used in this paper is gathered from 490 random visitors to the Imam Reza Hospital at Tabriz, who had been suspicions of having gastric cancer. The proposed data mining algorithm based on ontology makes rules more intuitive, appealing and understandable, eliminates waste and useless rules, and as a minor result, significantly reduces Apriori algorithm running time. The experimental results confirm the efficiency and advantages of this algorithm.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Student > Master 5 14%
Student > Postgraduate 3 8%
Student > Bachelor 2 5%
Other 2 5%
Other 5 14%
Unknown 13 35%
Readers by discipline Count As %
Computer Science 11 30%
Neuroscience 2 5%
Philosophy 1 3%
Business, Management and Accounting 1 3%
Psychology 1 3%
Other 6 16%
Unknown 15 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 March 2016.
All research outputs
#15,364,458
of 22,856,968 outputs
Outputs from SpringerPlus
#932
of 1,849 outputs
Outputs of similar age
#178,538
of 300,116 outputs
Outputs of similar age from SpringerPlus
#83
of 162 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,849 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,116 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 162 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.