↓ Skip to main content

Quantification of perflutren microsphere contrast destruction during transit through an ex vivo extracorporeal membrane oxygenation circuit

Overview of attention for article published in Intensive Care Medicine Experimental, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
8 Mendeley
Title
Quantification of perflutren microsphere contrast destruction during transit through an ex vivo extracorporeal membrane oxygenation circuit
Published in
Intensive Care Medicine Experimental, March 2016
DOI 10.1186/s40635-016-0079-0
Pubmed ID
Authors

David G. Platts, Charles McDonald, Kiran Shekar, Darryl J. Burstow, Daniel Mullany, Marc Ziegenfuss, Sara Diab, John F. Fraser

Abstract

Echocardiography is a key investigation in the management of patients on extracorporeal membrane oxygenation (ECMO). However, echocardiographic images are often non-diagnostic in this patient population. Contrast-enhanced echocardiography may overcome many of these limitations but contrast microspheres are hydrodynamically labile structures prone to destruction from shear forces and turbulent flow, which may exist within an ECMO circuit. This study sought to evaluate microsphere destruction (utilising signal intensity as a marker of contrast concentration) during transit through an ECMO circuit. Activated Definity® contrast was diluted to 50 ml with normal saline and infused into a crystalloid primed ex vivo ECMO with a Quadrox oxygenator at 150 ml/h. Imaging was performed on pre- and post-pump head/oxygenator sections of the circuit using a Philips iE33 scanner and S5-1 transducer. Five-millimetre regions of interest were placed in the centre of the ultrasound field. Average signal intensity (decibels) was calculated at speeds of 1000, 2000, 3000 and 4000 rpm and then repeated with an infusion rate of 300 ml/h. The oxygenator was then spliced out of the circuit and the measures repeated. There was a significant reduction in contrast concentration during passage through the ECMO circuit at all speeds (with higher pump head speeds resulting in greater microsphere destruction). In a circuit with an oxygenator, relative decrease in signal intensity was 21.4 versus 5.2 % without an oxygenator. There was significant destruction of contrast microspheres during passage through the ECMO circuit at all pump head speeds. An oxygenator contributed to microsphere destruction at a significantly greater level than the pump head alone. There was no significant difference in mean signal intensity reduction in the circuit between an infusion of 150 or 300 ml/h (3.5 ± 3.2 versus 3.6 ± 2.5 dB, respectively, p = 0.79). Flow of contrast through an ECMO circuit results in significant destruction of microspheres. Circuits with an oxygenator result in significantly greater levels of contrast destruction than by the pump head alone. Clinicians should be cognisant of the relationship between ECMO circuit configurations, pump head speed and contrast destruction when performing a contrast-enhanced echocardiogram in patients supported with ECMO.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 25%
Student > Bachelor 1 13%
Lecturer 1 13%
Student > Master 1 13%
Student > Ph. D. Student 1 13%
Other 0 0%
Unknown 2 25%
Readers by discipline Count As %
Medicine and Dentistry 2 25%
Psychology 1 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Unknown 4 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2016.
All research outputs
#14,842,329
of 22,856,968 outputs
Outputs from Intensive Care Medicine Experimental
#249
of 447 outputs
Outputs of similar age
#168,674
of 299,532 outputs
Outputs of similar age from Intensive Care Medicine Experimental
#3
of 3 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 447 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,532 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.