↓ Skip to main content

Intelligent emission-sensitive routing for plugin hybrid electric vehicles

Overview of attention for article published in SpringerPlus, February 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
14 Mendeley
Title
Intelligent emission-sensitive routing for plugin hybrid electric vehicles
Published in
SpringerPlus, February 2016
DOI 10.1186/s40064-016-1802-8
Pubmed ID
Authors

Zhonghao Sun, Xingshe Zhou

Abstract

The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 50%
Student > Master 3 21%
Researcher 2 14%
Professor 1 7%
Unknown 1 7%
Readers by discipline Count As %
Engineering 5 36%
Computer Science 2 14%
Economics, Econometrics and Finance 1 7%
Mathematics 1 7%
Social Sciences 1 7%
Other 1 7%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2016.
All research outputs
#20,313,158
of 22,854,458 outputs
Outputs from SpringerPlus
#1,459
of 1,849 outputs
Outputs of similar age
#251,303
of 297,592 outputs
Outputs of similar age from SpringerPlus
#133
of 162 outputs
Altmetric has tracked 22,854,458 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,849 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,592 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 162 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.