↓ Skip to main content

ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner

Overview of attention for article published in SpringerPlus, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
28 Mendeley
Title
ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner
Published in
SpringerPlus, January 2016
DOI 10.1186/s40064-016-1678-7
Pubmed ID
Authors

Anna Omelyanenko, Petra Sekyrova, Michael Andäng

Abstract

Pluripotent stem cells are the starting cell type of choice for the development of many cell-based regenerative therapies due to their rapid and unlimited proliferation and broad differentiation potential. The unique pluripotent cell cycle underlies both these properties. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) family channels have previously been reported to modulate mouse embryonic stem cell (ESC) proliferation and here we characterize the effects of HCN inhibitor ZD7288 on ESC proliferation and stem cell identity. The doubling time of cells treated with the HCN blocker increased by ~30 % due to longer G1 and S phases, resulting in a nearly twofold reduction in ESC numbers after 4 day serum-free culture. Slower progression through S phase was not accompanied by H2AX phosphorylation or cell stalling at transition points, although EdU incorporation in treated cells was reduced. Despite the drastic cell cycle perturbations, the pluripotent status of the cells was not compromised by treatment. Cultures treated with the HCN blocker in maintenance conditions maintained pluripotency marker expression on both RNA and protein level, although we observed a reversible effect on morphology and colony formation frequency. Addition of ZD7288 in differentiating media improved FBS-driven differentiation, but not directed differentiation to neuroectoderm, further indicating that altered cell cycle structure does not necessarily compromise pluripotency and drive ESCs to differentiation. The categorically different outcomes of ZD7288 use during differentiation indicate that cell culture context can be determinative for effects of ion-modulatory molecules and underscores the need for exploring their action in serum-free conditions demanded by potential clinical use.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 18%
Researcher 4 14%
Librarian 3 11%
Student > Bachelor 3 11%
Student > Ph. D. Student 3 11%
Other 4 14%
Unknown 6 21%
Readers by discipline Count As %
Medicine and Dentistry 5 18%
Neuroscience 4 14%
Agricultural and Biological Sciences 4 14%
Biochemistry, Genetics and Molecular Biology 3 11%
Computer Science 1 4%
Other 6 21%
Unknown 5 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2016.
All research outputs
#18,437,241
of 22,842,950 outputs
Outputs from SpringerPlus
#1,259
of 1,849 outputs
Outputs of similar age
#283,813
of 392,529 outputs
Outputs of similar age from SpringerPlus
#108
of 206 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,849 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 392,529 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 206 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.