↓ Skip to main content

The dipeptide conformations of all twenty amino acid types in the context of biosynthesis

Overview of attention for article published in SpringerPlus, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
15 Mendeley
Title
The dipeptide conformations of all twenty amino acid types in the context of biosynthesis
Published in
SpringerPlus, November 2015
DOI 10.1186/s40064-015-1430-8
Pubmed ID
Authors

Robert P. Bywater, Valera Veryazov

Abstract

There have been many studies of dipeptide structure at a high level of accuracy using quantum chemical methods. Such calculations are resource-consuming (in terms of memory, CPU and other computational imperatives) which is the reason why most previous studies were restricted to the two simplest amino-acid residue types, glycine and alanine. We improve on this by extending the scope of residue types to include all 20 naturally occurring residue types. Our results reveal differences in secondary structure preferences for the all residue types. There are in most cases very deep energy troughs corresponding either to the polyproline II (collagen) helix and the α-helix or both. The β-strand was not strongly favoured energetically although the extent of this depression in the energy surface is, while not "deeper" (energetically), has a wider extent than the other two types of secondary structure. There is currently great interest in the question of cotranslational folding, the extent to which the nascent polypeptide begins to fold prior to emerging from the ribosome exit tunnel. Accordingly, while most previous quantum studies of dipeptides were carried out in the (simulated) gas or aqueous phase, we wished to consider the first step in polypeptide biosynthesis on the ribosome where neither gas nor aqueous conditions apply. We used a dielectric constant that would be compatible with the water-poor macromolecular (ribosome) environment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Student > Bachelor 2 13%
Student > Doctoral Student 2 13%
Researcher 2 13%
Student > Postgraduate 1 7%
Other 0 0%
Unknown 4 27%
Readers by discipline Count As %
Chemistry 4 27%
Agricultural and Biological Sciences 3 20%
Psychology 3 20%
Physics and Astronomy 1 7%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2015.
All research outputs
#20,295,501
of 22,832,057 outputs
Outputs from SpringerPlus
#1,460
of 1,850 outputs
Outputs of similar age
#239,103
of 285,322 outputs
Outputs of similar age from SpringerPlus
#89
of 115 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,850 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,322 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 115 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.