↓ Skip to main content

Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI

Overview of attention for article published in EJNMMI Physics, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
42 Mendeley
Title
Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI
Published in
EJNMMI Physics, December 2014
DOI 10.1186/s40658-014-0102-z
Pubmed ID
Authors

Jeanne M Gunzinger, Gaspar Delso, Andreas Boss, Miguel Porto, Helen Davison, Gustav K von Schulthess, Martin Huellner, Paul Stolzmann, Patrick Veit-Haibach, Irene A Burger

Abstract

Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) shows high potential for patients with oropharyngeal cancer. Dental implants can cause substantial artifacts in the oral cavity impairing diagnostic accuracy. Therefore, we evaluated new MRI sequences with multi-acquisition variable-resonance image combination (MAVRIC SL) in comparison to conventional high-bandwidth techniques and in a second step showed the effect of artifact size on MRI-based attenuation correction (AC) with a simulation study. Twenty-five patients with dental implants prospectively underwent a trimodality PET/CT/MRI examination after informed consent was obtained under the approval of the local ethics committee. A conventional 3D gradient-echo sequence (LAVA-Flex) commonly used for MRI-based AC of PET (acquisition time of 14 s), a T1w fast spin-echo sequence with high bandwidth (acquisition time of 3.2 min), as well as MAVRIC SL sequence without and with increased phase acceleration (MAVRIC, acquisition time of 6 min; MAVRIC-fast, acquisition time of 3.5 min) were applied. The absolute and relative reduction of the signal void artifact was calculated for each implant and tested for statistical significance using the Wilcoxon signed-rank test. The effect of artifact size on PET AC was simulated in one case with a large tumor in the oral cavity. The relative difference of the maximum standardized uptake value (SUVmax) in the tumor was calculated for increasing artifact sizes centered over the second molar. The absolute reduction of signal void from LAVA-Flex sequences to the T1-weighted fast spin-echo (FSE) sequences was 416 mm(2) (range 4 to 2,010 mm(2)) to MAVRIC 481 mm(2) (range 12 to 2,288 mm(2)) and to MAVRIC-fast 486 mm(2) (range 39 to 2,209 mm(2)). The relative reduction in signal void was significantly improved for both MAVRIC and MAVRIC-fast compared to T1 FSE (-75%/-78% vs. -62%, p < 0.001 for both). The relative error for SUVmax was negligible for artifacts of 0.5-cm diameter (-0.1%), but substantial for artifacts of 5.2-cm diameter (-33%). MAVRIC-fast could become useful for artifact reduction in PET/MR for patients with dental implants. This might improve diagnostic accuracy especially for patients with tumors in the oropharynx and substantially improve accuracy of PET quantification.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 14%
Student > Postgraduate 5 12%
Student > Master 5 12%
Student > Ph. D. Student 4 10%
Student > Doctoral Student 3 7%
Other 7 17%
Unknown 12 29%
Readers by discipline Count As %
Medicine and Dentistry 15 36%
Engineering 3 7%
Physics and Astronomy 2 5%
Business, Management and Accounting 2 5%
Neuroscience 2 5%
Other 6 14%
Unknown 12 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2015.
All research outputs
#15,349,419
of 22,831,537 outputs
Outputs from EJNMMI Physics
#76
of 181 outputs
Outputs of similar age
#209,188
of 353,411 outputs
Outputs of similar age from EJNMMI Physics
#1
of 1 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 181 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,411 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them