↓ Skip to main content

Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK-dependent mechanism

Overview of attention for article published in Intensive Care Medicine Experimental, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
11 Mendeley
Title
Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK-dependent mechanism
Published in
Intensive Care Medicine Experimental, January 2015
DOI 10.1186/s40635-014-0035-9
Pubmed ID
Authors

Criona M Walshe, John G Laffey, Leo Kevin, Daniel O’Toole

Abstract

Sepsis has been shown to precondition the intact heart against ischaemia/reperfusion (IR) injury, and prior endotoxin exposure of cells in in vitro models has shown evidence of protection against subsequent simulated ischaemia. Our aim in this study is to validate these findings and further investigate the signaling pathways involved. Adult male Sprague Dawley rats were randomised to control (n = 7) or caecal ligation and perforation (CLP)-induced sepsis (n = 7). Hearts were harvested at 48 h, suspended in Langendorff mode and subjected to 30-min global ischaemia followed by 90-min reperfusion. In subsequent experiments, designed to determine the mechanisms by which sepsis protected against ischaemic injury, endotoxin-stimulated isolated cardiomyocytes, pulmonary A549 cells and renal HK2 cells were subjected to normoxic and hypoxic conditions. The roles of key pathways, including mitogen-activated protein (MAP) kinases extracellular-regulated protein kinase (ERK) 1/2, p38 MAPK (p38), c-Jun NH2-terminal protein kinase (JNK)), and nuclear factor-kappaB (NF-κB) were examined. Systemic sepsis protected isolated hearts from subsequent ischaemic/reperfusion-induced injury, enhancing functional recovery on reperfusion [developed left ventricular pressure ((d)LVP) mean(SE) 66.63(±10.7) mmHg vs. 54.13(±9.9) mmHg; LVPmax at 60 min 67.29(±11.9) vs. 72.48(±9.3), sepsis vs. control] despite significantly reduced baseline LV function in CLP animals (p < 0.001). Septic preconditioning significantly reduced infarct size after IR injury (p < 0.05). Endotoxin exposure protected isolated cardiomyocytes against hypoxia-induced cell death (p < 0.001). This effect appeared mediated in part via the p38, JNK and NF-κB pathways, but was independent of the ERK pathway, and did not appear to be mediated via HMGB1. The preconditioning effect of endotoxin was also demonstrated in isolated kidney and lung cells, suggesting that this preconditioning effect of sepsis is not confined to the myocardium. Sepsis preconditions the isolated rat heart against myocardial IR injury. These effects appeared to be mediated in part via the p38, JNK and NF-κB and pathways, but were independent of the ERK and HMGB pathways.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 45%
Researcher 2 18%
Student > Postgraduate 1 9%
Student > Master 1 9%
Unknown 2 18%
Readers by discipline Count As %
Medicine and Dentistry 3 27%
Biochemistry, Genetics and Molecular Biology 3 27%
Pharmacology, Toxicology and Pharmaceutical Science 2 18%
Immunology and Microbiology 1 9%
Neuroscience 1 9%
Other 0 0%
Unknown 1 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2020.
All research outputs
#14,819,430
of 22,818,766 outputs
Outputs from Intensive Care Medicine Experimental
#248
of 446 outputs
Outputs of similar age
#199,314
of 353,187 outputs
Outputs of similar age from Intensive Care Medicine Experimental
#3
of 5 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 446 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,187 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.