↓ Skip to main content

Signal parameter estimation of complex exponentials using fourth order statistics: additive Gaussian noise environment

Overview of attention for article published in SpringerPlus, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
Title
Signal parameter estimation of complex exponentials using fourth order statistics: additive Gaussian noise environment
Published in
SpringerPlus, July 2015
DOI 10.1186/s40064-015-1131-3
Pubmed ID
Authors

Pradip Sircar, Mukesh K Dutta, Sudipta Mukhopadhyay

Abstract

A novel approach based on fourth order statistics is presented for estimating the parameters of the complex exponential signal model in additive colored Gaussian noise whose autocorrelation function is not known. Monte Carlo simulations demonstrate that the proposed method performs better than an existing method which also utilizes fourth order statistics under the similar noise condition. To deal with the non-stationarity of the modeled signal, various concepts are introduced while extending the estimation technique based on linear prediction to the higher order statistics domain. It is illustrated that the accuracy of parameter estimation in this case improves due to better handling of signal non-stationarity. While forming the fourth order moment/ cumulant of a signal, the choice of the lag-parameters is crucial. It has been demonstrated that the symmetric fourth order moment/ cumulant as defined in this paper will have many desirable properties.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 30%
Other 2 20%
Professor 2 20%
Librarian 1 10%
Student > Ph. D. Student 1 10%
Other 1 10%
Readers by discipline Count As %
Engineering 6 60%
Mathematics 2 20%
Physics and Astronomy 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 July 2015.
All research outputs
#15,340,005
of 22,817,213 outputs
Outputs from SpringerPlus
#932
of 1,851 outputs
Outputs of similar age
#137,579
of 234,778 outputs
Outputs of similar age from SpringerPlus
#52
of 112 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,851 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 234,778 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.