↓ Skip to main content

Comparison of 4′-[methyl-11C]thiothymidine (11C-4DST) and 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) PET/CT in human brain glioma imaging

Overview of attention for article published in EJNMMI Research, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
22 Mendeley
Title
Comparison of 4′-[methyl-11C]thiothymidine (11C-4DST) and 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) PET/CT in human brain glioma imaging
Published in
EJNMMI Research, March 2015
DOI 10.1186/s13550-015-0085-3
Pubmed ID
Authors

Yasunori Toyota, Keisuke Miyake, Nobuyuki Kawai, Tetsuhiro Hatakeyama, Yuka Yamamoto, Jun Toyohara, Yoshihiro Nishiyama, Takashi Tamiya

Abstract

3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been used to evaluate tumor malignancy and cell proliferation in human brain gliomas. However, (18)F-FLT has several limitations in clinical use. Recently, (11)C-labeled thymidine analogue, 4'-[methyl-(11)C]thiothymidine ((11)C-4DST), became available as an in vivo cell proliferation positron emission tomography (PET) tracer. The present study was conducted to evaluate the usefulness of (11)C-4DST PET in the diagnosis of human brain gliomas by comparing with the images of (18)F-FLT PET. Twenty patients with primary and recurrent brain gliomas underwent (18)F-FLT and (11)C-4DST PET scans. The uptake values in the tumors were evaluated using the maximum standardized uptake value (SUVmax), the tumor-to-normal tissue uptake (T/N) ratio, and the tumor-to-blood uptake (T/B) ratio. These values were compared among different glioma grades. Correlation between the Ki-67 labeling index and the uptake values of (11)C-4DST and (18)F-FLT in the tumor was evaluated using linear regression analysis. The relationship between the individual (18)F-FLT and (11)C-4DST uptake values in the tumors was also examined. (11)C-4DST uptake was significantly higher than that of (18)F-FLT in the normal brain. The uptake values of (11)C-4DST in the tumor were similar to those of (18)F-FLT resulting in better visualization with (18)F-FLT. No significant differences in the uptake values of (18)F-FLT and (11)C-4DST were noted among different glioma grades. Linear regression analysis showed a significant correlation between the Ki-67 labeling index and the T/N ratio of (11)C-4DST (r = 0.50, P < 0.05) and (18)F-FLT (r = 0.50, P < 0.05). Significant correlations were also found between the Ki-67 labeling index and the T/B ratio of (11)C-4DST (r = 0.52, P < 0.05) and (18)F-FLT (r = 0.55, P < 0.05). A highly significant correlation was observed between the individual T/N ratio of (11)C-4DST and (18)F-FLT in the tumor (r = 0.79, P = 0.0001). The present study demonstrates that (11)C-4DST is useful for the imaging of human brain gliomas with PET. A relatively higher background uptake of (11)C-4DST in the normal brain compared to (18)F-FLT limits the detection of low-tracer-uptake tumors. Moreover, no superiority was found in (11)C-4DST over (18)F-FLT in the evaluation of cell proliferation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 36%
Student > Bachelor 5 23%
Other 3 14%
Professor 1 5%
Student > Ph. D. Student 1 5%
Other 1 5%
Unknown 3 14%
Readers by discipline Count As %
Medicine and Dentistry 8 36%
Nursing and Health Professions 2 9%
Mathematics 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 4 18%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2015.
All research outputs
#15,333,503
of 22,805,349 outputs
Outputs from EJNMMI Research
#253
of 556 outputs
Outputs of similar age
#152,915
of 257,861 outputs
Outputs of similar age from EJNMMI Research
#8
of 14 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 556 research outputs from this source. They receive a mean Attention Score of 2.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 257,861 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.