↓ Skip to main content

Prolonged exposure to neutrophil extracellular traps can induce mitochondrial damage in macrophages and dendritic cells

Overview of attention for article published in SpringerPlus, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
66 Mendeley
Title
Prolonged exposure to neutrophil extracellular traps can induce mitochondrial damage in macrophages and dendritic cells
Published in
SpringerPlus, April 2015
DOI 10.1186/s40064-015-0932-8
Pubmed ID
Authors

Luis Donis-Maturano, Luvia E Sánchez-Torres, Arturo Cerbulo-Vázquez, Rommel Chacón-Salinas, Gina S García-Romo, Mariana C Orozco-Uribe, Juan C Yam-Puc, Marco A González-Jiménez, Yuriria L Paredes-Vivas, Juana Calderón-Amador, Sergio Estrada-Parra, Iris Estrada-García, Leopoldo Flores-Romo

Abstract

Neutrophils are one the earliest, crucial innate defenses against innumerable pathogens. Their main microbicidal activities include phagocytosis and degranulation, with many pharmacologically active molecules contributing to inflammation. Recently, a novel antimicrobial mechanism was discovered; the Neutrophil Extracelullar Traps (NETs) formed by extrusion of DNA and associated molecules (histones, elastase, antimicrobial peptides, among others) which trap and kill microorganisms. Since NETs were recently described, research has focused on their induction and microbicidal properties, and recently on disease involvement. However, the functional consequences of NETs interacting with other immune cells, either resident or recruited during early inflammation, have not been assessed. We therefore investigated the consequences of exposing two major APCs, macrophages (Mfs) and conventional Dendritic Cells (cDCs) to NETs. Our data revealed that at early times (30 min), both Antigen Presenting Cells (APCs) showed induction of important costimulatory molecules (CD80, CD86). Unexpectedly, however, at later times (6 and 24 hours) NETs apparently triggered a cell death process in these APCs by a caspase- and Apoptosis induced factor (AIF)-dependent pathway, suggesting mitochondrial damage. By rhodamine-123 labelling we found that in both APCs, relatively prolonged exposure to NETs or their components importantly decreased the mitochondrial membrane potential. Ultrastructural analysis confirmed mitochondrial alterations in both APCs. Our results would suggest that early in inflammation, NETs can activate the two main APCs (Mfs and cDCs), but as the process continues, NETs can then initiate apoptosis of these cells through mitochondrial harm. Conceivable, this "late" induction of cell death in these two APCs might start limiting an ongoing inflammatory process to control it.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Denmark 1 2%
Thailand 1 2%
Unknown 63 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 26%
Researcher 11 17%
Student > Bachelor 9 14%
Student > Master 6 9%
Student > Doctoral Student 3 5%
Other 8 12%
Unknown 12 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 29%
Medicine and Dentistry 10 15%
Immunology and Microbiology 9 14%
Biochemistry, Genetics and Molecular Biology 7 11%
Chemistry 3 5%
Other 5 8%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2015.
All research outputs
#14,812,046
of 22,805,349 outputs
Outputs from SpringerPlus
#835
of 1,851 outputs
Outputs of similar age
#148,468
of 263,809 outputs
Outputs of similar age from SpringerPlus
#28
of 61 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,851 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,809 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 61 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.