↓ Skip to main content

Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development

Overview of attention for article published in Rice, April 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
31 Mendeley
Title
Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development
Published in
Rice, April 2018
DOI 10.1186/s12284-018-0219-0
Pubmed ID
Authors

Sunok Moon, Moe Moe Oo, Backki Kim, Hee-Jong Koh, Sung Aeong Oh, Gihwan Yi, Gynheung An, Soon Ki Park, Ki-Hong Jung

Abstract

Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis and storage reserves of pollen. In addition, these candidates might be useful targets for future examinations of late pollen development, and will be a valuable resource for accelerating the understanding of molecular mechanisms for pollen maturation and germination processes in rice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 26%
Student > Ph. D. Student 5 16%
Student > Doctoral Student 3 10%
Student > Master 2 6%
Professor 1 3%
Other 1 3%
Unknown 11 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 42%
Biochemistry, Genetics and Molecular Biology 5 16%
Computer Science 1 3%
Engineering 1 3%
Unknown 11 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2018.
All research outputs
#17,947,156
of 23,045,021 outputs
Outputs from Rice
#229
of 389 outputs
Outputs of similar age
#236,981
of 326,557 outputs
Outputs of similar age from Rice
#9
of 15 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 389 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,557 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.