↓ Skip to main content

Modeling photocatalytic degradation of diazinon from aqueous solutions and effluent toxicity risk assessment using Escherichia coli LMG 15862

Overview of attention for article published in AMB Express, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
21 Mendeley
Title
Modeling photocatalytic degradation of diazinon from aqueous solutions and effluent toxicity risk assessment using Escherichia coli LMG 15862
Published in
AMB Express, April 2018
DOI 10.1186/s13568-018-0589-0
Pubmed ID
Authors

Ali Toolabi, Mohammad Malakootian, Mohammad Taghi Ghaneian, Ali Esrafili, Mohammad Hassan Ehrampoush, Mohsen AskarShahi, Maesome Tabatabaei

Abstract

In this study, modeling and degradation of diazinon from contaminated water by advanced oxidation process together with a new test for effluent bioassay using E. coli were investigated. The experiments were designed based on response surface methodology. Nanoparticles (NPs) were synthesized using the sol-gel method. The shape characteristics and specifications of elements in the nanoparticles were characterized using scanning electron microscope and energy dispersive X-ray, respectively. Diazinon was measured using high performance liquid chromatography device and by-products due to its decomposition were identified by gas chromatography-mass (GC-MS). In the present study, effluent bioassay tests were conducted by defining the rate of dehydrogenase enzyme reducing alamar blue method. According to statistical analyses (R2 = 0.986), the optimized values for pH, dose of NPs, and contact time were found to be 6.75, 775 mg/L, and 65 min, respectively. At these conditions, 96.06% of the diazinon was removed. Four main by-products, diazoxon, 7-methyl-3-octyne, 2-isopropyl-6-methyl-4pyrimidinol and diethyl phosphonate were detected. According to the alamar blue reducing (ABR) test, 50% effective concentration, no observed effect concentration, and 100% effective concentration (EC100) for the mortality rate of E. coli were obtained as 2.275, 0.839, and 4.430 mg/L, respectively. Based on the results obtained, it was found that mentioned process was high efficiency in removing diazinon, and also a significant relationship between toxicity assessment tests were obtained (P < 0.05).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 19%
Student > Postgraduate 2 10%
Student > Bachelor 2 10%
Lecturer 1 5%
Professor 1 5%
Other 5 24%
Unknown 6 29%
Readers by discipline Count As %
Chemistry 4 19%
Engineering 2 10%
Environmental Science 1 5%
Nursing and Health Professions 1 5%
Unspecified 1 5%
Other 4 19%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2018.
All research outputs
#20,481,952
of 23,043,346 outputs
Outputs from AMB Express
#974
of 1,242 outputs
Outputs of similar age
#288,379
of 327,287 outputs
Outputs of similar age from AMB Express
#39
of 62 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,242 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,287 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.