↓ Skip to main content

Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis

Overview of attention for article published in Intensive Care Medicine Experimental, April 2017
Altmetric Badge

Readers on

mendeley
42 Mendeley
Title
Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis
Published in
Intensive Care Medicine Experimental, April 2017
DOI 10.1186/s40635-017-0134-5
Pubmed ID
Authors

Bereketeab Haileselassie, Erik Su, Iraklis Pozios, Diego F. Niño, Hongyun Liu, Dai-Yin Lu, Ioannis Ventoulis, William B. Fulton, Chhinder P. Sodhi, David Hackam, Brian O’Rourke, Theodore Abraham

Abstract

Recognition of cardiomyopathy in sepsis can be challenging due to the limitations of conventional measures such as ejection fraction (EF) and fractional shortening (FS) in the context of variable preload and afterload conditions. This study correlates myocardial function using strain echocardiography (SE) with cardiomyocyte oxidative stress in a murine model of sepsis. C57BL/6J mice were randomized into control (n = 10), sham (n = 25), and a cecal ligation and puncture (CLP) (n = 33) model of sepsis. Echocardiography was performed pre-, 12, 24, and 48 h post-injury. Cardiac pro-inflammatory cytokines and mitochondrial redox scavenger expression were evaluated in a subset of each arm. To evaluate the influence of redox scavenger upregulation on oxidative injury and cardiac function, CLP was performed on mitochondrial catalase-upregulated C57BL/6J MCAT(+/+) mice (n = 12) and wild-type (WT) animals for comparison. Septic C57BL/6J mice exhibited depressed longitudinal strain (LS) when compared to sham and control at 24 h (p < 0.01) and 48 h (p = 0.04) post-CLP despite having a preserved EF. Furthermore, there was a significant association between increased odds of mortality and depressed LS (OR = 1.23, p = 0.04). Septic C57BL/6J mice concomitantly demonstrated increased expression of cardiomyocyte pro-inflammatory cytokines and decreased expression of redox scavengers at 24 and 48 h. When comparing C57Bl/6 MCAT (+/+) mice and C57BL/6J WT mice, a significant decrease in LS was identified in the WT mice at 24 h (MCAT = -23 ± 5% vs. WT = -15 ± 4% p < 0.01) and 48 h (MCAT = -23 ± 7% vs. WT = -15 ± 4.3% p = 0.04) post-CLP which correlated with significant increase in the level of cardiac oxidative stress following CLP. In this sepsis model, SE identified cardiomyopathy despite normal EF. SE depression temporally coincides with upregulation of inflammatory cytokines and decreases expression of key mitochondrial ROS scavengers. Upregulation of redox scavenger (CAT) abrogates oxidative stress and cardiac dysfunction in this sepsis model.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 17%
Student > Bachelor 7 17%
Student > Master 6 14%
Other 3 7%
Student > Doctoral Student 2 5%
Other 8 19%
Unknown 9 21%
Readers by discipline Count As %
Medicine and Dentistry 17 40%
Veterinary Science and Veterinary Medicine 3 7%
Agricultural and Biological Sciences 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Nursing and Health Professions 1 2%
Other 6 14%
Unknown 10 24%