↓ Skip to main content

MR-based motion correction for cardiac PET parametric imaging: a simulation study

Overview of attention for article published in EJNMMI Physics, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
16 Mendeley
Title
MR-based motion correction for cardiac PET parametric imaging: a simulation study
Published in
EJNMMI Physics, February 2018
DOI 10.1186/s40658-017-0200-9
Pubmed ID
Authors

Rong Guo, Yoann Petibon, Yixin Ma, Georges El Fakhri, Kui Ying, Jinsong Ouyang

Abstract

Both cardiac and respiratory motions bias the kinetic parameters measured by dynamic PET. The aim of this study was to perform a realistic positron emission tomography-magnetic resonance (PET-MR) simulation study using 4D XCAT to evaluate the impact of MR-based motion correction on the estimation of PET myocardial kinetic parameters using PET-MR. Dynamic activity distributions were obtained based on a one-tissue compartment model with realistic kinetic parameters and an arterial input function. Realistic proton density/T1/T2 values were also defined for the MRI simulation. Two types of motion patterns, cardiac motion only (CM) and both cardiac and respiratory motions (CRM), were generated. PET sinograms were obtained by the projection of the activity distributions. PET image for each time frame was obtained using static (ST), gated (GA), non-motion-corrected (NMC), and motion-corrected (MC) methods. Voxel-wise unweighted least squares fitting of the dynamic PET data was then performed to obtain K1 values for each study. For each study, the mean and standard deviation of K1 values were computed for four regions of interest in the myocardium across 25 noise realizations. Both cardiac and respiratory motions introduce blurring in the PET parametric images if the motion is not corrected. Conventional cardiac gating is limited by high noise level on parametric images. Dual cardiac and respiratory gating further increases the noise level. In contrast to GA, the MR-based MC method reduces motion blurring in parametric images without increasing noise level. It also improves the myocardial defect delineation as compared to NMC method. Finally, the MR-based MC method yields lower bias and variance in K1 values than NMC and GA, respectively. The reductions of K1 bias by MR-based MC are 7.7, 5.1, 15.7, and 29.9% in four selected 0.18-mL myocardial regions of interest, respectively, as compared to NMC for CRM. MR-based MC yields 85.9, 75.3, 71.8, and 95.2% less K1 standard deviation in the four regions, respectively, as compared to GA for CRM. This simulation study suggests that the MR-based motion-correction method using PET-MR greatly reduces motion blurring on parametric images and yields less K1 bias without increasing noise level.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 38%
Student > Ph. D. Student 2 13%
Student > Master 2 13%
Other 1 6%
Professor > Associate Professor 1 6%
Other 1 6%
Unknown 3 19%
Readers by discipline Count As %
Engineering 4 25%
Medicine and Dentistry 3 19%
Psychology 1 6%
Nursing and Health Professions 1 6%
Agricultural and Biological Sciences 1 6%
Other 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 February 2018.
All research outputs
#15,483,707
of 23,008,860 outputs
Outputs from EJNMMI Physics
#77
of 182 outputs
Outputs of similar age
#269,437
of 440,023 outputs
Outputs of similar age from EJNMMI Physics
#1
of 1 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 182 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,023 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them