↓ Skip to main content

Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

Overview of attention for article published in Discover Nano, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
63 Mendeley
Title
Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity
Published in
Discover Nano, October 2014
DOI 10.1186/1556-276x-9-565
Pubmed ID
Authors

Sumaira Ashraf, Mariyam Asghar Chatha, Wardah Ejaz, Hussnain Ahmed Janjua, Irshad Hussain

Abstract

Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 22%
Student > Master 10 16%
Student > Ph. D. Student 9 14%
Other 4 6%
Student > Postgraduate 4 6%
Other 11 17%
Unknown 11 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 17%
Chemistry 8 13%
Agricultural and Biological Sciences 8 13%
Immunology and Microbiology 4 6%
Materials Science 4 6%
Other 9 14%
Unknown 19 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2014.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Discover Nano
#538
of 1,146 outputs
Outputs of similar age
#161,528
of 269,032 outputs
Outputs of similar age from Discover Nano
#13
of 21 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,032 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.