↓ Skip to main content

Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer

Overview of attention for article published in European Journal of Hybrid Imaging, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Readers on

mendeley
44 Mendeley
Title
Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer
Published in
European Journal of Hybrid Imaging, October 2017
DOI 10.1186/s41824-017-0006-y
Pubmed ID
Authors

Ichiei Kuji, Tomohiko Yamane, Akira Seto, Yota Yasumizu, Suguru Shirotake, Masafumi Oyama

Abstract

To investigate the improvement of prognostication of active bone metastatic burden by discriminating bone metastases from degenerative changes in hot foci, using skeletal standardized uptake values (SUVs) by quantitative bone single photon emission tomography/computed tomography (SPECT/CT) in patients with prostate cancer. We investigated 170 patients with prostate cancer who underwent skeletal quantitative SPECT/CT using 99mTc-methylene-diphosphonate (MDP), through conjugate gradient reconstruction with tissue zoning, attenuation, and scatter corrections applied, called as CGZAS reconstruction, in a retrospective cohort study. The maximum, peak, and average SUVs (SUVmax, SUVpeak, and SUVave, respectively) were obtained for visually normal thoracic (T; n = 100) and lumbar (L; n = 140) vertebral bodies as controls, as well as for bone metastases (n = 126) and degenerative changes (n = 114) as hot foci. They were also correlated with age, body-weight, height, biochemistry data, and extent of disease (EOD). Discrimination accuracy of the SUVs for bone metastases in hot foci was evaluated by a patient-based and lesion-based receiver-operator characteristic curve (ROC) analysis. The skeletal SUVmax was 7.58 ± 2.42 for T, 8.12 ± 12.24 for L, 16.73 ± 6.74 for degenerative changes, and 40.90 ± 33.46 for bone metastases. The SUVs of the bone metastasis group were significantly (p < 0.001) greater than of the other three groups. With disease extent, serum alkaline phosphatase and prostate specific antigen were increased, while SUVs for bone metastases were decreased in EOD grade 4. In ROC analyses for bone metastases by skeletal SUVs demonstrating the diagnostic accuracy of skeletal SUVs for discriminating bone metastasis from degenerative changes in hot foci, area under curves were 0.840, 0.817, and 0.845 in patient-based mode, and 0.932, 0.920, and 0.930 in lesion-based mode. The skeletal SUVs by 99mTc-MDP SPECT/CT for active bone metastases were greater than those for degenerative changes in patients with prostate cancer, with a feasible discrimination accuracy in the hot foci. Therefore, skeletal SUVs, especially SUVmax, in quantitative bone SPECT/CT may be helpful indices for the prognostication of bone metastatic burden, improving discrimination of active bone osteoblastic metastases in patients with prostate cancer from frequently coexisting degenerative changes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Other 11 25%
Student > Ph. D. Student 6 14%
Researcher 4 9%
Student > Master 3 7%
Professor > Associate Professor 2 5%
Other 5 11%
Unknown 13 30%
Readers by discipline Count As %
Medicine and Dentistry 17 39%
Physics and Astronomy 5 11%
Computer Science 2 5%
Chemistry 2 5%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 2 5%
Unknown 15 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2021.
All research outputs
#14,366,228
of 23,006,268 outputs
Outputs from European Journal of Hybrid Imaging
#23
of 69 outputs
Outputs of similar age
#180,205
of 324,848 outputs
Outputs of similar age from European Journal of Hybrid Imaging
#1
of 1 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 69 research outputs from this source. They receive a mean Attention Score of 3.2. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,848 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them