↓ Skip to main content

The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

Overview of attention for article published in SpringerPlus, September 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
19 Mendeley
Title
The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma
Published in
SpringerPlus, September 2014
DOI 10.1186/2193-1801-3-495
Pubmed ID
Authors

Ingrid A M van Roosmalen, Carlos R Reis, Rita Setroikromo, Saravanan Yuvaraj, Justin V Joseph, Pieter G Tepper, Frank A E Kruyt, Wim J Quax

Abstract

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related apoptosis-inducing ligand (TRAIL WT) or the DR5-specific TRAIL D269H/E195R variant as a potential new strategy to eradicate GBM cells using TRAIL-resistant and -sensitive GBM cells. GBM cell lines were investigated for their sensitivity to TRAIL, DMC and combination of both agents. Cell viability was measured by MTS assay and apoptosis was assessed by Annexin V/PI and acridine orange staining. Caspase activation and protein expression levels were analysed with Western blotting. Death Receptor (DR) cell surface expression levels were quantified by flow cytometry. DR5 expression was increased in U87 cells by ectopic expression using a retroviral plasmid and survivin expression was silenced using specific siRNAs. We demonstrate that A172 expresses mainly DR5 on the cell surface and that these cells show increased sensitivity for the DR5-specific rhTRAIL D269H/E195R variant. In contrast, U87 cells show low DR cell surface levels and is insensitive via both DR4 and DR5. We determined that DMC treatment displays a dose-dependent reduction in cell viability against a number of GBM cells, associated with ER stress induction, as shown by the up-regulation of glucose-regulated protein 78 (GRP78) and CCAAT/-enhancer-binding protein homologous protein (CHOP) in A172 and U87 cells. The dramatic decrease in cell viability is not accompanied by a correspondent increase in Annexin V/PI or caspase activation typically seen in apoptotic or/and necrotic cells within 24h of treatment. Although DMC did not affect DR5 expression in the GBM cells, it increased TRAIL-induced caspase-8 activation in both TRAIL-sensitive and -resistant cells, indicating that DMC potentiates initiator caspase activation in these cells. In A172 cells, sub-toxic concentrations of DMC greatly potentiated TRAIL-induced apoptosis. Furthermore, DMC strongly reduced survivin expression in A172 and U87 cells and silencing of this anti-apoptotic protein partially sensitized cells to TRAIL-induced apoptosis. Our findings corroborate that DMC is a promising agent against GBM, and uncovers a potential synergistic cooperation with TRAIL in this highly malignant cancer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 26%
Student > Ph. D. Student 5 26%
Researcher 2 11%
Other 1 5%
Professor 1 5%
Other 3 16%
Unknown 2 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 37%
Medicine and Dentistry 7 37%
Agricultural and Biological Sciences 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Unknown 3 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2014.
All research outputs
#18,378,085
of 22,763,032 outputs
Outputs from SpringerPlus
#1,261
of 1,852 outputs
Outputs of similar age
#169,013
of 237,237 outputs
Outputs of similar age from SpringerPlus
#76
of 104 outputs
Altmetric has tracked 22,763,032 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,852 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 237,237 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 104 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.