↓ Skip to main content

Comparative Expression Analysis of Rice and Arabidopsis Peroxiredoxin Genes Suggests Conserved or Diversified Roles Between the Two Species and Leads to the Identification of Tandemly Duplicated Rice…

Overview of attention for article published in Rice, June 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
32 Mendeley
Title
Comparative Expression Analysis of Rice and Arabidopsis Peroxiredoxin Genes Suggests Conserved or Diversified Roles Between the Two Species and Leads to the Identification of Tandemly Duplicated Rice Peroxiredoxin Genes Differentially Expressed in Seeds
Published in
Rice, June 2017
DOI 10.1186/s12284-017-0170-5
Pubmed ID
Authors

Yun-Shil Gho, Sun-A Park, Sung-Ruyl Kim, Anil Kumar Nalini Chandran, Gynheung An, Ki-Hong Jung

Abstract

Peroxiredoxins (PRXs) have recently been identified as plant antioxidants. Completion of various genome sequencing projects has provided genome-wide information about PRX genes in major plant species. Two of these -- Oryza sativa (rice) and Arabidopsis -- each have 10 PRX members. Although significant progress has been made in understanding their biological roles in Arabidopsis, those functions in rice, a model crop plant, have not been well studied. We performed a comparative expression analysis of rice and Arabidopsis PRXs. Our phylogenetic analysis revealed that one subgroup contains three rice and three Arabidopsis Type-II PRXs that are expressed ubiquitously. This suggests that they are involved in housekeeping functions to process reactive oxygen species (ROS). Within the second subgroup, expression of Os1-CysPrxA (LOC_Os7g44430) and AtOs1-CysPrx is conserved in seeds while Os1-CysPrxB (LOC_Os7g44440) shows a root-preferential pattern of expression. We used transgenic plants expressing the GUS reporter gene under the control of the promoters of these two tandem duplicates to confirm their meta-expression patterns. Our GUS expression data from developing seeds and those that were germinating indicated that Os1-CysPrxB is involved in root development, as initiated from the embryo, while Os1-CysPrxA has roles in regulating endosperm development near the aleurone layer. For the third and fourth subgroups, the rice PRXs are more likely to show leaf/shoot-preferential expression, while those from Arabidopsis are significantly expressed in the flowers and seeds in addition to the leaf/shoot. To determine the biological meaning of those expression patterns that were dominantly identified in rice PRXs, we analyzed three rice genes showing leaf/shoot-preferential expression in a mutant of the light-responsive 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) gene and found that two of them were significantly down-regulated in the mutant. A global expression analysis of the PRX family in rice identified tandem duplicates, Os1-CysPrxA and Os1-CysPrxB, in the 1-CysPrx subgroup that are differentially expressed in developing seeds and germinating seeds. Analysis of the cis-acting regulatory elements (CREs) revealed unique CREs responsible for embryo and root or endosperm-preferential expression. In addition, the presence of leaf/shoot-preferential PRXs in rice suggests that they are required in that crop because those plants must tolerate a higher light intensity in their normal growth environment when compared with that of Arabidopsis. Downregulation of two PRXs in the dxr mutant causing an albino phenotype, implying that those genes have roles in processing ROS produced during photosynthesis. Network analysis of four PRXs allowed us to model regulatory pathways that explain the underlying protein interaction network. This will be a useful hypothetical model for further study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 25%
Student > Ph. D. Student 7 22%
Student > Master 2 6%
Student > Doctoral Student 2 6%
Other 1 3%
Other 2 6%
Unknown 10 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 47%
Biochemistry, Genetics and Molecular Biology 5 16%
Business, Management and Accounting 1 3%
Unknown 11 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2017.
All research outputs
#18,556,449
of 22,982,639 outputs
Outputs from Rice
#251
of 388 outputs
Outputs of similar age
#241,458
of 315,940 outputs
Outputs of similar age from Rice
#10
of 16 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 388 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,940 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.