↓ Skip to main content

Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast

Overview of attention for article published in Rice, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
35 Mendeley
Title
Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast
Published in
Rice, May 2017
DOI 10.1186/s12284-017-0159-0
Pubmed ID
Authors

Chaivarakun Chaipanya, Mary Jeanie Telebanco-Yanoria, Berlaine Quime, Apinya Longya, Siripar Korinsak, Siriporn Korinsak, Theerayut Toojinda, Apichart Vanavichit, Chatchawan Jantasuriyarat, Bo Zhou

Abstract

Rice (Oryza sativa) is one of the most important food crops in the world. Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. To effectively cope with this problem, the use of rice blast resistance varieties through innovative breeding programs is the best strategy to date. The Thai rice variety Jao Hom Nin (JHN) showed broad-spectrum resistance against Thai rice blast isolates. Two QTLs for blast resistance in JHN were reported on chromosome 1 (QTL1) and 11 (QTL11). Monogenic lines of QTL1 (QTL1-C) and QTL11 (QTL11-C) in the CO39 genetic background were generated. Cluster analysis based on the disease reaction pattern of QTL1-C and QTL11-C, together with IRBLs, showed that those two monogenic lines were clustered with IRBLsh-S (Pish) and IRBL7-M (Pi7), respectively. Moreover, sequence analysis revealed that Pish and Pi7 were embedded within the QTL1 and QTL11 delimited genomic intervals, respectively. This study thus concluded that QTL1 and QTL11 could encode alleles of Pish and Pi7, designated as Pish-J and Pi7-J, respectively. To validate this hypothesis, the genomic regions of Pish-J and Pi7-J were cloned and sequenced. Protein sequence comparison revealed that Pish-J and Pi7-J were identical to Pish and Pi7, respectively. The holistic disease spectrum of JHN was found to be exactly attributed to the additive ones of both QTL1-C and QTL11-C. JHN showed broad spectrum resistance against Thai and Philippine rice blast isolates. As this study demonstrated, the combination of two resistance genes, Pish-J and Pi7-J, in JHN, with each controlling broad-spectrum resistance to rice blast disease, explains the high level of resistance. Thus, the combination of Pish and Pi7 can provide a practical scheme for breeding durable resistance in rice against rice blast disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 20%
Researcher 6 17%
Student > Doctoral Student 3 9%
Student > Master 3 9%
Student > Bachelor 1 3%
Other 2 6%
Unknown 13 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 46%
Environmental Science 1 3%
Arts and Humanities 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Earth and Planetary Sciences 1 3%
Other 0 0%
Unknown 15 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2017.
All research outputs
#14,935,459
of 22,971,207 outputs
Outputs from Rice
#159
of 388 outputs
Outputs of similar age
#185,101
of 310,860 outputs
Outputs of similar age from Rice
#4
of 15 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 388 research outputs from this source. They receive a mean Attention Score of 3.8. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,860 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.