↓ Skip to main content

Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29

Overview of attention for article published in AMB Express, December 2023
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
9 Mendeley
Title
Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29
Published in
AMB Express, December 2023
DOI 10.1186/s13568-023-01647-3
Pubmed ID
Authors

Soha Elshaer, Mona I. Shaaban

Abstract

Microbial resistance and biofilm formation have been considered as the main problems associated with microbial resistance. Several antimicrobial agents cannot penetrate biofilm layers and cannot eradicate microbial infection. Therefore, the aim of this study is the biological synthesis of silver and copper nanoparticles to assess their activities on bacterial attachment and on the viability of dormant cells within the biofilm matrix. Ag-NPs and Cu-NPs were biosynthesized using Streptomyces isolate S29. The biologically synthesized Ag-NPs and Cu-NPs exhibited brown and blue colors and were detected by UV/Vis spectrophotometry at 476 and 594 nm, respectively. The Ag-NPs showed an average size of 10-20 nm as indicated by TEM, and 25-35 nm for Cu-NPs. Both Ag-NPs and Cu-NPs were monodispersed with a polydispersity index of 0.1-0.546 and zeta potential were - 29.7, and - 33.7 mv, respectively. The biologically synthesized Ag-NPs and Cu-NPs significantly eliminated bacterial attachment and decreased the viable cells in the biofilm matrix as detected by using crystal violet and tri-phenyl tetrazolium chloride assays. Furthermore, Ag-NPs and Cu-NPs significantly eradicated mature biofilms developed by various Gram-negative pathogens, including A. baumannii, K. pneumoniae and P. aeruginosa standard strains and clinical isolates. Data were also confirmed at the molecular level with prominent elimination of biofilm gene expression carO, bssS and pelA in A. baumannii, K. pneumoniae and P. aeruginosa, respectively compared to untreated cells under the same conditions. As indicated, Ag-NPs and Cu-NPs could be used as adjuvant therapy in eradication of antibiotic resistance and biofilm matrix associated with Gram-negative bacterial infection.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 11%
Student > Ph. D. Student 1 11%
Other 1 11%
Student > Bachelor 1 11%
Student > Master 1 11%
Other 0 0%
Unknown 4 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 22%
Veterinary Science and Veterinary Medicine 1 11%
Unspecified 1 11%
Agricultural and Biological Sciences 1 11%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2023.
All research outputs
#22,357,878
of 24,950,117 outputs
Outputs from AMB Express
#1,019
of 1,308 outputs
Outputs of similar age
#136,321
of 172,828 outputs
Outputs of similar age from AMB Express
#3
of 5 outputs
Altmetric has tracked 24,950,117 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,308 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 172,828 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.