↓ Skip to main content

Calcium desensitisation in late polymicrobial sepsis is associated with loss of vasopressor sensitivity in a murine model

Overview of attention for article published in Intensive Care Medicine Experimental, January 2015
Altmetric Badge

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
22 Mendeley
Title
Calcium desensitisation in late polymicrobial sepsis is associated with loss of vasopressor sensitivity in a murine model
Published in
Intensive Care Medicine Experimental, January 2015
DOI 10.1186/s40635-014-0036-8
Pubmed ID
Authors

Benjamin AJ Reddi, John F Beltrame, Richard L Young, David P Wilson

Abstract

Sepsis is characterised by diminished vasopressor responsiveness. Vasoconstriction depends upon a balance: Ca(2+)-dependent myosin light-chain kinase promotes and Ca(2+)-independent myosin light-chain phosphatase (MLCP) opposes vascular smooth muscle contraction. The enzyme Rho kinase (ROK) inhibits MLCP, favouring vasoconstriction. We tested the hypothesis that ROK-dependent MLCP inhibition was attenuated in late sepsis and associated with reduced contractile responses to certain vasopressor agents. This is a prospective, controlled animal study. Sixteen-week-old C57/BL6 mice received laparotomy or laparotomy with caecal ligation and puncture (CLP). Antibiotics, fluids and analgesia were provided before sacrifice on day 5. Vasoconstriction of the femoral arteries to a range of stimuli was assessed using myography: (i) depolarisation with 87 mM K(+) assessed voltage-gated Ca(2+) channels (L-type, Cav1.2 Ca(2+) channels (LTCC)), (ii) thromboxane A2 receptor activation assessed the activation state of the LTCC and ROK/MLCP axis, (iii) direct PKC activation (phorbol-dibutyrate (PDBu), 5 μM) assessed the PKC/CPI-17 axis independent of Ca(2+) entry and (iv) α1-adrenoceptor stimulation with phenylephrine (10(-8) to 10(-4) M) and noradrenaline (10(-8) to 10(-4) M) assessed the sum of these pathways plus the role of the sarcoplasmic reticulum (SR). ROK-dependent MLCP activity was indexed by Western blot analysis of P[Thr855]MYPT. Parametric and non-parametric data were analysed using unpaired Student's t-tests and Mann-Whitney tests, respectively. ROK-dependent inhibition of MLCP activity was attenuated in both unstimulated (n = 6 to 7) and stimulated (n = 8 to 12) vessels from mice that had undergone CLP (p < 0.05). Vessels from CLP mice demonstrated reduced vasoconstriction to K(+), thromboxane A2 receptor activation and PKC activation (n = 8 to 13; p < 0.05). α1-adrenergic responses were unchanged (n = 7 to 12). In a murine model of sepsis, ROK-dependent inhibition of MLCP activity in vessels from septic mice was reduced. Responses to K(+) depolarisation, thromboxane A2 receptor activation and PKC activation were diminished in vitro whilst α1-adrenergic responses remained intact. Inhibiting MLCP may present a novel therapeutic target to manage sepsis-induced vascular dysfunction.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 18%
Researcher 3 14%
Student > Bachelor 2 9%
Student > Postgraduate 2 9%
Student > Master 2 9%
Other 3 14%
Unknown 6 27%
Readers by discipline Count As %
Medicine and Dentistry 8 36%
Agricultural and Biological Sciences 2 9%
Biochemistry, Genetics and Molecular Biology 1 5%
Unspecified 1 5%
Psychology 1 5%
Other 3 14%
Unknown 6 27%