↓ Skip to main content

Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum

Overview of attention for article published in AMB Express, August 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
9 Mendeley
Title
Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum
Published in
AMB Express, August 2023
DOI 10.1186/s13568-023-01597-w
Pubmed ID
Authors

Wafa A. Alshehri, Aala A. Abulfaraj, Mashael D. Alqahtani, Maryam M. Alomran, Nahaa M. Alotaibi, Khairiah Alwutayd, Abeer S. Aloufi, Fatimah M. Alshehrei, Khulood F. Alabbosh, Sahar A. Alshareef, Ruba A. Ashy, Mohammed Y. Refai, Rewaa S. Jalal

Abstract

A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Student > Master 1 11%
Unknown 6 67%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 33%
Immunology and Microbiology 1 11%
Unknown 5 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2023.
All research outputs
#20,242,932
of 24,891,087 outputs
Outputs from AMB Express
#845
of 1,307 outputs
Outputs of similar age
#235,683
of 337,272 outputs
Outputs of similar age from AMB Express
#13
of 21 outputs
Altmetric has tracked 24,891,087 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,307 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,272 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.