↓ Skip to main content

Influence of corticosteroid treatment on CXCR4 expression in DLBCL

Overview of attention for article published in EJNMMI Research, May 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Readers on

mendeley
2 Mendeley
Title
Influence of corticosteroid treatment on CXCR4 expression in DLBCL
Published in
EJNMMI Research, May 2023
DOI 10.1186/s13550-023-00993-4
Pubmed ID
Authors

Sebastian Martin, David Viertl, Anna Janz, Stefan Habringer, Ulrich Keller, Margret Schottelius

Abstract

CXCR4-targeted radioligand therapy (RLT) with [177Lu]Lu/[90Y]Y-PentixaTher has recently evolved as a promising therapeutic option for patients with advanced hematological cancers. Given their advanced disease stage, most patients scheduled for PentixaTher RLT require concomitant or bridging chemotherapy to prevent intermittent tumor progression. These (mostly combination) therapies may cause significant downregulation of tumoral CXCR4 expression, challenging the applicability of PentixaTher RLT. This study therefore aimed at investigating the influence of corticosteroids, a central component of these chemotherapies, on CXCR4 regulation in diffuse large B cell lymphoma (DLBCL). Different DLBCL cell lines (Daudi, OCI-LY1, SUDHL-4, -5-, -6 and -8) as well as the human T-cell lymphoma cell line Jurkat were incubated with Dexamethasone (Dex; 0.5 and 5 µM, respectively) and Prednisolone (Pred; 5 and 50 µM, respectively) for different time points (2 h, 24 h). Treatment-induced modulation of cellular CXCR4 surface expression was assessed via flow cytometry (FC) and compared to untreated cells. A radioligand binding assay with [125I]CPCR4.3 was performed in parallel using the same cells. To quantify potential corticosteroid treatment effects on tumoral CXCR4 expression in vivo, OCI-LY1 bearing NSG mice were injected 50 µg Dex/mouse i.p. (daily for 6 days). Then, a biodistribution study (1 h p.i.) using [68Ga]PentixaTher was performed, and tracer biodistribution in treated (n = 5) vs untreated mice (n = 5) was compared. In the in vitro experiments, a strongly cell line-dependent upregulation of CXCR4 was observed for both Dex and Pred treatment, with negligible differences between the high and low dose. While in Jurkat, Daudi and SUDHL-8 cells, CXCR4 expression remained unchanged, a 1.5- to 3.5-fold increase in CXCR4 cell surface expression was observed for SUDHL-5 < SUDHL-4 /-6 < OCI-LY1 via FC compared to untreated cells. This increase in CXCR4 expression was also reflected in correspondingly enhanced [125I]CPCR4.3 accumulation in treated cells, with a linear correlation between FC and radioligand binding data. In vivo, Dex treatment led to a general increase of [68Ga]PentixaTher uptake in all organs compared to untreated animals, as a result of a higher tracer concentration in blood. However, we observed an overproportionally enhanced [68Ga]PentixaTher uptake in the OCI-LY1 tumors in treated (21.0 ± 5.5%iD/g) vs untreated (9.2 ± 2.8%iD/g) mice, resulting in higher tumor-to-background ratios in the treatment group. Overall, corticosteroid treatment (Dex/Pred) consistently induced an upregulation of CXCR4 expression DBLCL cells in vitro, albeit in a very cell line-dependent manner. For the cell line with the most pronounced Dex-induced CXCR4 upregulation, OCI-LY1, the in vitro findings were corroborated by an in vivo biodistribution study. This confirms that at least the corticosteroid component of stabilizing chemotherapy regimens in DLBCL patients prior to [177Lu]Lu-PentixaTher RLT does not lead to downregulation of the molecular target CXCR4 and may even have a beneficiary effect. However, further studies are needed to investigate if and to what extent the other commonly used chemotherapeutic agents affect CXCR4 expression on DLBCL to ensure the choice of an appropriate treatment regimen prior to [177Lu]Lu/[90Y]Y-PentixaTher RLT.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 50%
Unknown 1 50%
Readers by discipline Count As %
Medicine and Dentistry 1 50%
Unknown 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2023.
All research outputs
#15,989,082
of 23,730,866 outputs
Outputs from EJNMMI Research
#271
of 581 outputs
Outputs of similar age
#111,262
of 206,829 outputs
Outputs of similar age from EJNMMI Research
#3
of 4 outputs
Altmetric has tracked 23,730,866 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 581 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 206,829 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.