↓ Skip to main content

Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome

Overview of attention for article published in Molecular and Cellular Pediatrics, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
24 Mendeley
Title
Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome
Published in
Molecular and Cellular Pediatrics, November 2016
DOI 10.1186/s40348-016-0065-3
Pubmed ID
Authors

Pamela Millar-Büchner, Amber R. Philp, Noemí Gutierrez, Sandra Villanueva, Bredford Kerr, Carlos A. Flores

Abstract

Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 25%
Student > Ph. D. Student 4 17%
Other 3 13%
Student > Bachelor 2 8%
Lecturer 2 8%
Other 3 13%
Unknown 4 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 38%
Agricultural and Biological Sciences 4 17%
Veterinary Science and Veterinary Medicine 1 4%
Immunology and Microbiology 1 4%
Social Sciences 1 4%
Other 4 17%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2016.
All research outputs
#14,871,791
of 22,908,162 outputs
Outputs from Molecular and Cellular Pediatrics
#47
of 98 outputs
Outputs of similar age
#236,600
of 414,929 outputs
Outputs of similar age from Molecular and Cellular Pediatrics
#3
of 4 outputs
Altmetric has tracked 22,908,162 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 98 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 414,929 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.