↓ Skip to main content

What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria

Overview of attention for article published in AMB Express, July 2022
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
Title
What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria
Published in
AMB Express, July 2022
DOI 10.1186/s13568-022-01440-8
Pubmed ID
Authors

Marta Barbato, Violetta Vacchini, Aschwin H. Engelen, Giovanni Patania, Francesca Mapelli, Sara Borin, Elena Crotti

Abstract

Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 13%
Student > Bachelor 1 6%
Researcher 1 6%
Lecturer 1 6%
Student > Master 1 6%
Other 0 0%
Unknown 10 63%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 31%
Biochemistry, Genetics and Molecular Biology 1 6%
Unknown 10 63%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2022.
All research outputs
#18,554,389
of 22,979,862 outputs
Outputs from AMB Express
#805
of 1,239 outputs
Outputs of similar age
#298,844
of 431,616 outputs
Outputs of similar age from AMB Express
#13
of 27 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,239 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 431,616 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 27 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.