↓ Skip to main content

Electronic transmittance phase extracted from mesoscopic interferometers

Overview of attention for article published in Nanoscale Research Letters, October 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Readers on

mendeley
1 Mendeley
Title
Electronic transmittance phase extracted from mesoscopic interferometers
Published in
Nanoscale Research Letters, October 2012
DOI 10.1186/1556-276x-7-568
Pubmed ID
Authors

M Ţolea, V Moldoveanu, IV Dinu, B Tanatar

Abstract

: The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called 'open' interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in 'closed' interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the 'bare' QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a Π lapse. Therefore, closed mesoscopic interferometers can be used to address the 'universal phase lapse' problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses.

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 100%
Readers by discipline Count As %
Physics and Astronomy 1 100%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2012.
All research outputs
#11,048,818
of 12,429,961 outputs
Outputs from Nanoscale Research Letters
#453
of 798 outputs
Outputs of similar age
#109,718
of 129,231 outputs
Outputs of similar age from Nanoscale Research Letters
#1
of 1 outputs
Altmetric has tracked 12,429,961 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 798 research outputs from this source. They receive a mean Attention Score of 2.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 129,231 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them