↓ Skip to main content

Metals, oxidative stress and neurodegenerative disorders

Overview of attention for article published in Molecular and Cellular Biochemistry, August 2010
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
2 X users
patent
3 patents
facebook
3 Facebook pages
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
857 Dimensions

Readers on

mendeley
706 Mendeley
citeulike
4 CiteULike
Title
Metals, oxidative stress and neurodegenerative disorders
Published in
Molecular and Cellular Biochemistry, August 2010
DOI 10.1007/s11010-010-0563-x
Pubmed ID
Authors

Klaudia Jomova, Dagmar Vondrakova, Michael Lawson, Marian Valko

Abstract

The neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39-42 residue peptide referred to as the amyloid-β protein (Aβ). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called α-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO·), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (α-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 706 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 <1%
Spain 3 <1%
United Kingdom 2 <1%
Brazil 1 <1%
Australia 1 <1%
Sweden 1 <1%
Canada 1 <1%
Portugal 1 <1%
China 1 <1%
Other 7 <1%
Unknown 684 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 139 20%
Researcher 96 14%
Student > Master 90 13%
Student > Bachelor 78 11%
Student > Doctoral Student 55 8%
Other 120 17%
Unknown 128 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 171 24%
Chemistry 84 12%
Biochemistry, Genetics and Molecular Biology 77 11%
Medicine and Dentistry 62 9%
Neuroscience 41 6%
Other 107 15%
Unknown 164 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2021.
All research outputs
#4,517,025
of 25,998,826 outputs
Outputs from Molecular and Cellular Biochemistry
#179
of 2,494 outputs
Outputs of similar age
#19,426
of 108,850 outputs
Outputs of similar age from Molecular and Cellular Biochemistry
#2
of 11 outputs
Altmetric has tracked 25,998,826 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,494 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 108,850 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.