↓ Skip to main content

Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces

Overview of attention for article published in Discover Nano, August 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
38 Mendeley
Title
Unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after Ar+ ion irradiation of few-layer graphene surfaces
Published in
Discover Nano, August 2012
DOI 10.1186/1556-276x-7-466
Pubmed ID
Authors

Salim Hamood Al-Harthi, Mohammed Elzain, Muataz Al-Barwani, Amal Kora'a, Thomas Hysen, Myo Tay Zar Myint, Maliemadom Ramaswamy Anantharaman

Abstract

Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 37%
Researcher 5 13%
Student > Doctoral Student 4 11%
Student > Master 3 8%
Student > Bachelor 2 5%
Other 7 18%
Unknown 3 8%
Readers by discipline Count As %
Materials Science 11 29%
Physics and Astronomy 10 26%
Engineering 6 16%
Chemistry 2 5%
Nursing and Health Professions 1 3%
Other 2 5%
Unknown 6 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2012.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Discover Nano
#798
of 1,146 outputs
Outputs of similar age
#169,084
of 187,133 outputs
Outputs of similar age from Discover Nano
#14
of 47 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 187,133 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.