↓ Skip to main content

Systemic Sirolimus to Prevent In-Stent Stenosis in Pediatric Pulmonary Vein Stenosis

Overview of attention for article published in Pediatric Cardiology, November 2019
Altmetric Badge

Mentioned by

twitter
1 tweeter
Title
Systemic Sirolimus to Prevent In-Stent Stenosis in Pediatric Pulmonary Vein Stenosis
Published in
Pediatric Cardiology, November 2019
DOI 10.1007/s00246-019-02253-6
Pubmed ID
Authors

Ryan Callahan, Jesse J. Esch, Grace Wang, Christina M. Ireland, Kimberlee Gauvreau, Kathy J. Jenkins

Abstract

Evaluate the efficacy of systemic sirolimus (rapamycin) in preventing in-stent stenosis (ISS) in pediatric intraluminal pulmonary vein stenosis (PVS). Report the adverse events related to sirolimus therapy. There is a high incidence of ISS following stent implantation in PVS. The use of sirolimus in preventing ISS has not been reported. Retrospective review of all patients who received sirolimus (8 week course) for treatment of ISS for PVS between January 2013 and June 2018. Forty stents (37 bare metal, 3 drug-eluting) in 20 patients were treated with sirolimus; 20 at the time of implantation (primary prevention [1P]) and 20 following documented ISS requiring transcatheter reintervention (secondary prevention [2P]). Treated patients were young (median 2 y/o [0.7-5.7]) and most had PVS associated with congenital heart disease (75%, 15/20; 4/15 with TAPVC). In the 1P group, 85% (17/20) of stents were without significant (< 50%) ISS at median of 102 days (range 56-527); the growth rate of ISS in this group was 7.5 ± 7.1%/month. In the 2P group, most stents had a slower growth rate of ISS after sirolimus therapy compared to pre-treatment (median 3.7 [- 0.2 to 13.1] vs. 10.4 [1.3 to 19.5] %/month; p < 0.001). One patient developed pneumonia on drug while concurrently taking another immunosuppressive agent. No other serious adverse events were related to sirolimus therapy. Systemic sirolimus slows the growth rate of ISS following stent implantation in PVS compared to pre-treatment rates and was administered safely in a small number of pediatric patients with complex heart disease.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 November 2019.
All research outputs
#12,423,794
of 14,043,366 outputs
Outputs from Pediatric Cardiology
#745
of 1,227 outputs
Outputs of similar age
#236,962
of 287,423 outputs
Outputs of similar age from Pediatric Cardiology
#24
of 33 outputs
Altmetric has tracked 14,043,366 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,227 research outputs from this source. They receive a mean Attention Score of 1.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 287,423 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.