↓ Skip to main content

Saturation of electrical resistivity of solid iron at Earth’s core conditions

Overview of attention for article published in SpringerPlus, March 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
22 Mendeley
Title
Saturation of electrical resistivity of solid iron at Earth’s core conditions
Published in
SpringerPlus, March 2016
DOI 10.1186/s40064-016-1829-x
Pubmed ID
Authors

Monica Pozzo, Dario Alfè

Abstract

We report on the temperature dependence of the electrical resistivity of solid iron at high pressure, up to and including conditions likely to be found at the centre of the Earth. We have extended some of the calculations of the resistivities of pure solid iron we recently performed at Earth's core conditions (Pozzo et al. in Earth Planet Sci Lett 393:159-164, 2014) to lower temperature. We show that at low temperature the resistivity increases linearly with temperature, and saturates at high temperature. This saturation effect is well known as the Mott-Ioffe-Regel limit in metals, but has been largely ignored to estimate the resistivity of iron at Earth's core conditions. Recent experiments (Gomi et al. in Phys Earth Planet Int 224:88-103, 2013) coupled new high pressure data and saturation to predict the resitivity of iron and iron alloys at Earth's core conditions, and reported values up to three times lower than previous estimates, confirming recent first principles calculations (de Koker et al. in Proc Natl Acad Sci 109:4070-4073, 2012; Pozzo et al. in Nature 485:355-358, 2012, Phys Rev B 87:014110-10, 2013, Earth Planet Sci Lett 393:159-164, 2014; Davies et al. in Nat Geosci 8:678-685, 2015). The present results support the saturation effect idea.

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 23%
Student > Ph. D. Student 5 23%
Professor 3 14%
Lecturer 2 9%
Student > Master 1 5%
Other 1 5%
Unknown 5 23%
Readers by discipline Count As %
Earth and Planetary Sciences 7 32%
Physics and Astronomy 5 23%
Agricultural and Biological Sciences 1 5%
Materials Science 1 5%
Unknown 8 36%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2016.
All research outputs
#20,311,744
of 22,852,911 outputs
Outputs from SpringerPlus
#1,459
of 1,849 outputs
Outputs of similar age
#251,966
of 298,399 outputs
Outputs of similar age from SpringerPlus
#133
of 162 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,849 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,399 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 162 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.