↓ Skip to main content

Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires

Overview of attention for article published in Progress in Orthodontics, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
32 Mendeley
Title
Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires
Published in
Progress in Orthodontics, October 2015
DOI 10.1186/s40510-015-0109-6
Pubmed ID
Authors

Marieke G. Hobbelink, Yan He, Jia Xu, Huixu Xie, Richard Stoll, Qingsong Ye

Abstract

The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical properties of rectangular SS archwires. pH plays a synergistic effect on the change of mechanical properties of stainless steel (SS) wires along with wire bending.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 25%
Student > Bachelor 4 13%
Student > Postgraduate 4 13%
Professor 3 9%
Student > Doctoral Student 2 6%
Other 4 13%
Unknown 7 22%
Readers by discipline Count As %
Medicine and Dentistry 16 50%
Biochemistry, Genetics and Molecular Biology 2 6%
Materials Science 2 6%
Psychology 1 3%
Arts and Humanities 1 3%
Other 2 6%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 October 2015.
All research outputs
#16,722,190
of 25,374,647 outputs
Outputs from Progress in Orthodontics
#111
of 255 outputs
Outputs of similar age
#167,470
of 295,174 outputs
Outputs of similar age from Progress in Orthodontics
#4
of 7 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 255 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,174 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.