↓ Skip to main content

Bromocriptine treatment in patients with peripartum cardiomyopathy and right ventricular dysfunction

Overview of attention for article published in Clinical Research in Cardiology, August 2018
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
10 Mendeley
Title
Bromocriptine treatment in patients with peripartum cardiomyopathy and right ventricular dysfunction
Published in
Clinical Research in Cardiology, August 2018
DOI 10.1007/s00392-018-1355-7
Pubmed ID
Authors

Arash Haghikia, Johannes Schwab, Jens Vogel-Claussen, Dominik Berliner, Tobias Pfeffer, Tobias König, Carolin Zwadlo, Valeska Abou Moulig, Annegret Franke, Marziel Schwarzkopf, Philipp Ehlermann, Roman Pfister, Guido Michels, Ralf Westenfeld, Verena Stangl, Uwe Kühl, Edith Podewski, Ingrid Kindermann, Michael Böhm, Karen Sliwa, Denise Hilfiker-Kleiner, Johann Bauersachs

Abstract

Right ventricular (RV) dysfunction predicts adverse outcome in peripartum cardiomyopathy (PPCM). We recently demonstrated beneficial effects associated with the prolactin release inhibitor bromocriptine at different doses when added to standard heart failure therapy in PPCM. Here, we evaluated for the first time the therapeutic potential of bromocriptine particularly in PPCM patients with RV involvement. In this study, 40 patients with PPCM were included, of whom 24 patients had reduced RV ejection fraction (RVEF < 45%). We examined the effect of short-term (1W: bromocriptine, 2.5 mg, 7 days, n = 10) compared with long-term bromocriptine treatment (8W: 5 mg for 2 weeks followed by 2.5 mg for another 6 weeks, n = 14) in addition to guideline-based heart failure therapy in patients with an initial RVEF < 45% on the following outcomes: (1) change from baseline (Δ delta) in RVEF, (2) change from baseline in left ventricular EF (LVEF), and (3) rate of patients with full LV recovery (LVEF ≥ 50%) and (4) rate of patients with full RV recovery (RVEF ≥ 55%) at 6-month follow-up as assessed by cardiac magnetic resonance imaging. Reduced RVEF at initial presentation was associated with a lower rate of full cardiac recovery at 6-month follow-up (patients with RV dysfunction: 58% vs. patients with normal RV function: 81%; p = 0.027). RVEF increased from 38 ± 7 to 53 ± 11% with a delta-RVEF of + 15 ± 12% in the 1W group, and from 35 ± 9 to 58 ± 7% with a Δ RVEF of + 23 ± 10% in the 8W group (Δ RVEF 1W vs 8W: p = 0.118). LVEF increased from 25 ± 8 to 46 ± 12% with a Δ LVEF of + 21 ± 11% in the 1W group, and from 22 ± 6 to 49 ± 10% with a Δ LVEF of + 27 ± 9% in the 8W group (Δ LVEF 1W vs 8W: p = 0.211). Full LV recovery was present in 50% of the 1W group and in 64% of the 8W group (p = 0.678). Full RV recovery was observed in 40% of the 1W group and in 79% of the 8W group (p = 0.092). Despite overall worse outcome in patients with RV dysfunction at baseline, bromocriptine treatment in PPCM patients with RV involvement was associated with a high rate of full RV and LV recovery, although no significant differences were observed between the short-term and long-term bromocriptine treatment regime. These findings suggest that bromocriptine in addition to standard heart failure therapy may be also effective in PPCM patients with biventricular impairment.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 30%
Student > Bachelor 2 20%
Researcher 2 20%
Student > Master 1 10%
Other 1 10%
Other 1 10%
Readers by discipline Count As %
Medicine and Dentistry 8 80%
Biochemistry, Genetics and Molecular Biology 1 10%
Unspecified 1 10%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2018.
All research outputs
#11,879,415
of 13,396,180 outputs
Outputs from Clinical Research in Cardiology
#332
of 416 outputs
Outputs of similar age
#231,522
of 268,375 outputs
Outputs of similar age from Clinical Research in Cardiology
#12
of 13 outputs
Altmetric has tracked 13,396,180 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 416 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,375 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.