↓ Skip to main content

Profiling of microRNAs modulating cytomegalovirus infection in astrocytoma patients

Overview of attention for article published in Neurological Sciences, August 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
25 Mendeley
Title
Profiling of microRNAs modulating cytomegalovirus infection in astrocytoma patients
Published in
Neurological Sciences, August 2018
DOI 10.1007/s10072-018-3518-8
Pubmed ID
Authors

Ravindra Pramod Deshpande, Manas Panigrahi, Chandrasekhar Y.B.V.K., Phanithi Prakash Babu

Abstract

Astrocytoma is recognized as the most common neoplasm of the brain with aggressive progression. The therapeutic regime for glioblastoma, the most aggressive astrocytoma, often consists of aggressive chemo and radiotherapy. The present holistic approaches, however, have failed to influence the quality life of patients. Therefore, it is necessary to understand the underlying mechanisms of its progression for updated therapeutic evaluation. Human cytomegalovirus (HCMV) is reported to be associated with glioblastoma progression. The hypothesis still remains controversial due to the lack of concrete evidences. Here, we report the profile of miRNAs encoded by human host and the cytomegalovirus (CMV) involved in modulation of CMV infection in surgically resected human astrocytoma tissue samples of various malignancy grades (n = 24). Total RNA from the control brain and tumor tissues was extracted by TriZol reagent. The expression levels of the mature form of miRNA were detected by real-time PCR. Primarily, we found the upregulation of miR-210-3p, miR-155-5p, miR-UL-112-3p, miR-183-5p, and miR-223-5p in high-grade astrocytic tumors as compared with low-grade tumor tissues. miR-214-3p is significantly expressed in control brain tissues and its expression decreased with astrocytoma grade progression. This miRNA was reported to be associated with antiviral proprieties. Among CMV-encoded miRNA, miR-UL-112-3p was significantly upregulated in glioblastoma tissue samples and may be involved in providing immune escape to the virus as well as involved in modulating the immune microenvironment of glioblastoma. Taken together, we conclude the possible involvement of miRNAs in modulating the CMV dependent astrocytoma progression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 20%
Student > Bachelor 4 16%
Student > Master 3 12%
Student > Doctoral Student 2 8%
Lecturer 1 4%
Other 0 0%
Unknown 10 40%
Readers by discipline Count As %
Medicine and Dentistry 7 28%
Biochemistry, Genetics and Molecular Biology 4 16%
Arts and Humanities 2 8%
Nursing and Health Professions 1 4%
Neuroscience 1 4%
Other 0 0%
Unknown 10 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2018.
All research outputs
#21,158,537
of 25,988,468 outputs
Outputs from Neurological Sciences
#584
of 784 outputs
Outputs of similar age
#268,125
of 343,962 outputs
Outputs of similar age from Neurological Sciences
#1
of 1 outputs
Altmetric has tracked 25,988,468 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 784 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,962 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them