↓ Skip to main content

(E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates LPS-Mediated Memory Impairment by Inhibition of STAT3 Pathway

Overview of attention for article published in NeuroMolecular Medicine, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
17 Mendeley
Title
(E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates LPS-Mediated Memory Impairment by Inhibition of STAT3 Pathway
Published in
NeuroMolecular Medicine, October 2017
DOI 10.1007/s12017-017-8469-3
Pubmed ID
Authors

Ji Yeon Choi, Chul Ju Hwang, Do Yeon Lee, Sun Mi Gu, Hee Pom Lee, Dong Young Choi, Ki Wan Oh, Sang-Bae Han, Jin Tae Hong

Abstract

Alzheimer's disease (AD) is pathologically characterized by an excessive accumulation of amyloid-beta (Aβ) fibrils within the brain. We tested the anti-inflammatory and anti-amyloidogenic effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor. We examined whether MMPP (5 mg/kg in drinking water for 1 month) prevents amyloidogenesis and cognitive impairment on AD model mice induced by intraperitoneal LPS (250 μg/kg daily 7 times) injections. Additionally, we investigated the anti-neuroinflammatory and anti-amyloidogenic effect of MMPP (1, 5, and 10 μg/mL) in LPS (1 μg/mL)-treated cultured astrocytes and microglial BV-2 cells. MMPP treatment reduced LPS-induced memory loss. This memory recovery effect was associated with the reduction of LPS-induced inflammatory proteins; cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as activation of microglial cells and astrocytes in the brain. Furthermore, MMPP reduced LPS-induced β-secretase and Aβ generation. In in vitro study, LPS-induced expression of inflammatory proteins and amyloidogenic proteins was decreased in microglial BV-2 cells and cultured astrocytes by MMPP treatment. Moreover, MMPP treatment suppressed DNA binding activities of the activation of STAT3 in in vivo and in vitro. These results indicated that MMPP inhibits LPS-induced amyloidogenesis and neuroinflammation via inhibition of STAT3.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 18%
Student > Master 2 12%
Researcher 2 12%
Student > Bachelor 2 12%
Unspecified 1 6%
Other 2 12%
Unknown 5 29%
Readers by discipline Count As %
Neuroscience 5 29%
Agricultural and Biological Sciences 3 18%
Nursing and Health Professions 1 6%
Unspecified 1 6%
Medicine and Dentistry 1 6%
Other 0 0%
Unknown 6 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2018.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from NeuroMolecular Medicine
#385
of 452 outputs
Outputs of similar age
#285,538
of 327,384 outputs
Outputs of similar age from NeuroMolecular Medicine
#3
of 6 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 452 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,384 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.