↓ Skip to main content

Production of bioactive chicken (Gallus gallus) follistatin-type proteins in E. coli

Overview of attention for article published in AMB Express, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
21 Mendeley
Title
Production of bioactive chicken (Gallus gallus) follistatin-type proteins in E. coli
Published in
AMB Express, August 2015
DOI 10.1186/s13568-015-0142-3
Pubmed ID
Authors

Sang Beum Lee, Sung Kwon Park, Yong Soo Kim

Abstract

Follistatin (FST) is a cysteine-rich autocrine glycoprotein and plays an important role in mammalian prenatal and postnatal development. FST binds to and inhibit myostatin (MSTN), a potent negative regulator of skeletal muscle growth, and FST abundance enhances muscle growth in animals via inhibition of MSTN activity. The objective of this study was to produce biologically active, four chicken FST-type proteins in an Escherichia coli expression system. Gibson assembly cloning method was used to insert the DNA fragments of four FST-type proteins, designated as FST288, NDFSD1/2, NDFSD1, and NDFSD1/1, into pMALc5x vector downstream of the maltose-binding protein (MBP) gene, and the plasmids containing the inserts were eventually transformed into Shuffle E. coli strain for protein expression. We observed a soluble expression of the four MBP-fused FST-type proteins, and the proteins could be easily purified by the combination of amylose and heparin resin affinity chromatography. MBP-fused FST-type proteins demonstrated their affinity to anti-FST antibody. In an in vitro reporter gene assay to examine their potencies and selectivities to different ligands (MSTN, GDF11, and activin A), the four FST-type proteins (MBP-FST288, MBP-NDFSD1/2, MBP-NDFSD1, and MBP-NDFSD1/1) showed different potency and selectivity against the three ligands from each other. Ligand selectivity of each FST-type proteins was similar to its counterpart FST-type protein of eukaryotic origin. In conclusion, we could produce four FST-type proteins having different ligand selectivity in E. coli, and the results imply that economic production of a large amount of FST-type proteins with different ligand selectivity is possible to examine their potential use in meat-producing animals.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 19%
Professor 4 19%
Student > Doctoral Student 3 14%
Student > Bachelor 2 10%
Student > Ph. D. Student 2 10%
Other 4 19%
Unknown 2 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 38%
Biochemistry, Genetics and Molecular Biology 5 24%
Mathematics 1 5%
Immunology and Microbiology 1 5%
Engineering 1 5%
Other 0 0%
Unknown 5 24%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2015.
All research outputs
#15,344,095
of 22,824,164 outputs
Outputs from AMB Express
#445
of 1,234 outputs
Outputs of similar age
#157,216
of 267,539 outputs
Outputs of similar age from AMB Express
#17
of 25 outputs
Altmetric has tracked 22,824,164 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,234 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,539 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.