↓ Skip to main content

Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress

Overview of attention for article published in Planta, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
64 Dimensions

Readers on

mendeley
34 Mendeley
Title
Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress
Published in
Planta, August 2015
DOI 10.1007/s00425-015-2374-5
Pubmed ID
Authors

Tielong Cheng, Jinhui Chen, Abd_Allah EF, Pengkai Wang, Guangping Wang, Xiangyang Hu, Jisen Shi

Abstract

NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 35%
Other 3 9%
Student > Master 2 6%
Student > Bachelor 1 3%
Professor 1 3%
Other 4 12%
Unknown 11 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 35%
Chemistry 3 9%
Environmental Science 2 6%
Biochemistry, Genetics and Molecular Biology 2 6%
Nursing and Health Professions 1 3%
Other 1 3%
Unknown 13 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 August 2016.
All research outputs
#17,766,929
of 22,818,766 outputs
Outputs from Planta
#2,048
of 2,718 outputs
Outputs of similar age
#177,697
of 264,410 outputs
Outputs of similar age from Planta
#15
of 32 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,718 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,410 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.