↓ Skip to main content

An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters

Overview of attention for article published in Clinical and Translational Medicine, February 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
134 Mendeley
Title
An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters
Published in
Clinical and Translational Medicine, February 2015
DOI 10.1186/s40169-015-0050-9
Pubmed ID
Authors

Rhea M May, Chelsea M Magin, Ethan E Mann, Michael C Drinker, John C Fraser, Christopher A Siedlecki, Anthony B Brennan, Shravanthi T Reddy

Abstract

Catheter-related bloodstream infections (CRBSIs) and catheter-related thrombosis (CRT) are common complications of central venous catheters (CVC), which are used to monitor patient health and deliver medications. CVCs are subject to protein adsorption and platelet adhesion as well as colonization by the natural skin flora (i.e. Staphylococcus aureus and Staphylococcus epidermidis). Antimicrobial and antithrombotic drugs can prevent infections and thrombosis-related complications, but have associated resistance and safety risks. Surface topographies have shown promise in limiting platelet and bacterial adhesion, so it was hypothesized that an engineered Sharklet micropattern, inspired by shark-skin, may provide a combined approach as it has wide reaching anti-fouling capabilities. To assess the feasibility for this micropattern to improve CVC-related healthcare outcomes, bacterial colonization and platelet interactions were analyzed in vitro on a material common for vascular access devices. To evaluate bacterial inhibition after simulated vascular exposure, micropatterned thermoplastic polyurethane surfaces were preconditioned with blood proteins in vitro then subjected to a bacterial challenge for 1 and 18 h. Platelet adhesion was assessed with fluorescent microscopy after incubation of the surfaces with platelet-rich plasma (PRP) supplemented with calcium. Platelet activation was further assessed by monitoring fibrin formation with fluorescent microscopy after exposure of the surfaces to platelet-rich plasma (PRP) supplemented with calcium in a flow-cell. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times. Blood and serum conditioned micropatterned surfaces reduced 18 h S. aureus and S. epidermidis colonization by 70% (p ≤ 0.05) and 71% (p < 0.01), respectively, when compared to preconditioned unpatterned controls. Additionally, platelet adhesion and fibrin sheath formation were reduced by 86% and 80% (p < 0.05), respectively, on the micropattern, when compared to controls. The Sharklet micropattern, in a CVC-relevant thermoplastic polyurethane, significantly reduced bacterial colonization and relevant platelet interactions after simulated vascular exposure. These results suggest that the incorporation of the Sharklet micropattern on the surface of a CVC may inhibit the initial events that lead to CRBSI and CRT.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 134 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Denmark 1 <1%
France 1 <1%
Unknown 131 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 22%
Student > Bachelor 23 17%
Student > Master 19 14%
Researcher 18 13%
Other 7 5%
Other 16 12%
Unknown 22 16%
Readers by discipline Count As %
Engineering 23 17%
Medicine and Dentistry 22 16%
Agricultural and Biological Sciences 11 8%
Chemistry 9 7%
Materials Science 9 7%
Other 27 20%
Unknown 33 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2020.
All research outputs
#8,535,472
of 25,374,647 outputs
Outputs from Clinical and Translational Medicine
#337
of 1,060 outputs
Outputs of similar age
#93,505
of 270,178 outputs
Outputs of similar age from Clinical and Translational Medicine
#5
of 8 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,060 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,178 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.