↓ Skip to main content

Dynamic modelling and natural characteristic analysis of cycloid ball transmission using lumped stiffness method

Overview of attention for article published in Robotics and Biomimetics, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user
Title
Dynamic modelling and natural characteristic analysis of cycloid ball transmission using lumped stiffness method
Published in
Robotics and Biomimetics, December 2017
DOI 10.1186/s40638-017-0080-4
Pubmed ID
Authors

Peng Zhang, Bingbing Bao, Meng Wang

Abstract

The vibration of robot joint reducer is the main factor that causes vibration or motion error of robot system. To improve the dynamic precision of robot system, the cycloid ball transmission used in robot joint is selected as study object in this paper. An efficient dynamic modelling method is presented-lumped stiffness method. Based on lumped stiffness method, a translational-torsional coupling dynamics model of cycloid ball transmission system is established. Mesh stiffness variation excitation, damping of system are all intrinsically considered in the model. The dynamic equation of system is derived by means of relative displacement relationship among different components. Then, the natural frequencies and vibration modes of the derivative system are presented by solving the associated eigenvalue problem. Finally, the influence of the main structural parameters on the natural frequency of the system is analysed. The present research can provide a new idea for dynamic analysis of robot joint reducer and provide a more simplify dynamic modelling method for robot system with joint reducer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2017.
All research outputs
#18,578,649
of 23,011,300 outputs
Outputs from Robotics and Biomimetics
#30
of 39 outputs
Outputs of similar age
#327,055
of 439,142 outputs
Outputs of similar age from Robotics and Biomimetics
#11
of 15 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 39 research outputs from this source. They receive a mean Attention Score of 1.8. This one scored the same or higher as 9 of them.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,142 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.