↓ Skip to main content

Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.)

Overview of attention for article published in Botanical Studies, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
53 Mendeley
Title
Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.)
Published in
Botanical Studies, October 2017
DOI 10.1186/s40529-017-0195-5
Pubmed ID
Authors

Yusong Jiang, Qinhong Liao, Yong Zou, Yiqing Liu, Jianbin Lan

Abstract

Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR). A total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the "terpenoid backbone biosynthesis" and "stilbenoid, diarylheptanoid and gingerol biosynthesis" pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log2 (fold-change) ≥ 1) in FR than in YG or MG. This study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to rhizomes, where they accumulate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 13%
Student > Bachelor 6 11%
Researcher 4 8%
Student > Master 4 8%
Student > Doctoral Student 3 6%
Other 11 21%
Unknown 18 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 23%
Agricultural and Biological Sciences 9 17%
Medicine and Dentistry 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Neuroscience 2 4%
Other 5 9%
Unknown 20 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2017.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Botanical Studies
#120
of 188 outputs
Outputs of similar age
#262,307
of 338,323 outputs
Outputs of similar age from Botanical Studies
#7
of 16 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 188 research outputs from this source. They receive a mean Attention Score of 4.5. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,323 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.