↓ Skip to main content

Ripple coarsening on ion beam-eroded surfaces

Overview of attention for article published in Discover Nano, August 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
25 Mendeley
Title
Ripple coarsening on ion beam-eroded surfaces
Published in
Discover Nano, August 2014
DOI 10.1186/1556-276x-9-439
Pubmed ID
Authors

Marc Teichmann, Jan Lorbeer, Frank Frost, Bernd Rauschenbach

Abstract

The temporal evolution of ripple pattern on Ge, Si, Al 2 O 3, and SiO 2 by low-energy ion beam erosion with Xe (+) ions is studied. The experiments focus on the ripple dynamics in a fluence range from 1.1 × 10(17) cm(-2) to 1.3 × 10(19) cm(-2) at ion incidence angles of 65° and 75° and ion energies of 600 and 1,200 eV. At low fluences a short-wavelength ripple structure emerges on the surface that is superimposed and later on dominated by long wavelength structures for increasing fluences. The coarsening of short wavelength ripples depends on the material system and angle of incidence. These observations are associated with the influence of reflected primary ions and gradient-dependent sputtering. The investigations reveal that coarsening of the pattern is a universal behavior for all investigated materials, just at the earliest accessible stage of surface evolution.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 32%
Student > Ph. D. Student 3 12%
Student > Bachelor 1 4%
Professor 1 4%
Other 1 4%
Other 4 16%
Unknown 7 28%
Readers by discipline Count As %
Materials Science 8 32%
Physics and Astronomy 5 20%
Engineering 2 8%
Unknown 10 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2014.
All research outputs
#17,285,036
of 25,371,288 outputs
Outputs from Discover Nano
#538
of 1,146 outputs
Outputs of similar age
#147,801
of 247,197 outputs
Outputs of similar age from Discover Nano
#20
of 31 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,197 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.