↓ Skip to main content

[18F]Fluoromisonidazole PET in rectal cancer

Overview of attention for article published in EJNMMI Research, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
24 Mendeley
Title
[18F]Fluoromisonidazole PET in rectal cancer
Published in
EJNMMI Research, September 2017
DOI 10.1186/s13550-017-0324-x
Pubmed ID
Authors

Tanuj Puri, Tessa A. Greenhalgh, James M. Wilson, Jamie Franklin, Lia Mun Wang, Victoria Strauss, Chris Cunningham, Mike Partridge, Tim Maughan

Abstract

There is an increasing interest in developing predictive biomarkers of tissue hypoxia using functional imaging for personalised radiotherapy in patients with rectal cancer that are considered for neoadjuvant chemoradiotherapy (CRT). The study explores [(18)F]fluoromisonidazole ([(18)F]FMISO) positron emission tomography (PET) scans for predicting clinical response in rectal cancer patients receiving neoadjuvant CRT. Patients with biopsy-proven rectal adenocarcinoma were imaged at 0-45 min, 2 and 4 h, at baseline and after 8-10 fractions of CRT (week 2). The first 6 patients did not receive an enema (the non-enema group) and the last 4 patients received an enema before PET-CT scan (the enema group). [(18)F]FMISO production failed on 2 occasions. Static PET images at 4 h were analysed using tumour-to-muscle (T:M) SUVmax and tumour-to-blood (T:B) SUVmax. The 0-45 min dynamic PET scans were analysed using Casciari model to report hypoxia and perfusion. Akaike information criteria (AIC) were used to compare data fittings for different pharmacokinetic models. Pathological tumour regression grade was scored using American Joint Committee on Cancer (AJCC) 7.0. Shapiro-Wilk test was used to evaluate the normality of the data. Five out of eleven (5/11) patients were classed as good responders (AJCC 0/1 or good clinical response) and 6/11 as poor responders (AJCC 2/3 or poor clinical response). The median T:M SUVmax was 2.14 (IQR 0.58) at baseline and 1.30 (IQR 0.19) at week 2, and the corresponding median tumour hypoxia volume was 1.08 (IQR 1.31) cm(3) and 0 (IQR 0.15) cm(3), respectively. The median T:B SUVmax was 2.46 (IQR 1.50) at baseline and 1.61 (IQR 0.14) at week 2, and the corresponding median tumour hypoxia volume was 5.68 (IQR 5.86) cm(3) and 0.76 (IQR 0.78) cm(3), respectively. For 0-45 min tumour modelling, the median hypoxia was 0.92 (IQR 0.41) min(-1) at baseline and 0.70 (IQR 0.10) min(-1) at week 2. The median perfusion was 4.10 (IQR 1.71) ml g(-1) min(-1) at baseline and 2.48 (IQR 3.62) ml g(-1) min(-1) at week 2. In 9/11 patients with both PET scans, tumour perfusion decreased in non-responders and increased in responders except in one patient. None of the changes in other PET parameters showed any clear trend with clinical outcome. This pilot study with small number of datasets revealed significant challenges in delivery and interpretation of [(18)F]FMISO PET scans of rectal cancer. There are two principal problems namely spill-in from non-tumour tracer activity from rectal and bladder contents. Emphasis should be made on reducing spill-in effects from the bladder to improve data quality. This preliminary study has shown fundamental difficulties in the interpretation of [(18)F]FMISO PET scans for rectal cancer, limiting its clinical applicability.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 21%
Student > Ph. D. Student 5 21%
Student > Bachelor 3 13%
Student > Doctoral Student 3 13%
Researcher 3 13%
Other 2 8%
Unknown 3 13%
Readers by discipline Count As %
Medicine and Dentistry 8 33%
Nursing and Health Professions 2 8%
Psychology 2 8%
Agricultural and Biological Sciences 1 4%
Immunology and Microbiology 1 4%
Other 3 13%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2018.
All research outputs
#14,955,443
of 23,002,898 outputs
Outputs from EJNMMI Research
#231
of 564 outputs
Outputs of similar age
#188,495
of 318,397 outputs
Outputs of similar age from EJNMMI Research
#7
of 20 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 564 research outputs from this source. They receive a mean Attention Score of 2.5. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,397 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.