↓ Skip to main content

Biological effects of citalopram in a suspended sediment-water system on Daphnia magna

Overview of attention for article published in Environmental Science and Pollution Research, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
22 Mendeley
Title
Biological effects of citalopram in a suspended sediment-water system on Daphnia magna
Published in
Environmental Science and Pollution Research, July 2017
DOI 10.1007/s11356-017-9763-1
Pubmed ID
Authors

Haohan Yang, Guanghua Lu, Zhenhua Yan, Jianchao Liu, Binni Ma, Huike Dong

Abstract

Suspended sediment (SPS) plays an important role in the aquatic ecosystems. Selective serotonin uptake inhibitors (SSRIs) are commonly used antidepressants and are frequently detected in aquatic environments. However, the biological effects of SSRIs in the presence of SPS are not well understood. To fill this gap, an SPS-water system was constructed to investigate the effects of citalopram (CIT) on Daphnia magna in the presence of SPS with different concentrations (0.1, 0.5, 1 g l(-1)) and organic carbon contents (0.5, 1, 1.5, 2%). A dialysis bag was applied in the exposure system to control the same dissolved concentration of CIT and prevent SPS from entering into the bag. The dissolved CIT concentration obviously decreased in the SPS-water system during the exposure period. The presence of SPS significantly increased the immobilization of D. magna, and the immobilization rates were positively correlated with the SPS concentration and negatively correlated with the organic carbon content in SPS. For a single exposure, CIT significantly increased superoxide dismutase (SOD) activity and inhibited acetylcholinesterase (AChE) activity in D. magna, while SPS itself did not change the SOD and AChE activities. In the SPS-water system, SOD activity was significantly suppressed, indicating that the SPS-CIT combination could result in oxidative damage. However, SPS did not enhance the neurotoxicity of D. magna that was induced by CIT. These results suggest that SPS exerts a vital role on the biological effects of CIT and the contaminants sorbed on SPS should be taken into consideration.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 14%
Student > Ph. D. Student 3 14%
Researcher 2 9%
Student > Doctoral Student 1 5%
Lecturer 1 5%
Other 3 14%
Unknown 9 41%
Readers by discipline Count As %
Environmental Science 8 36%
Agricultural and Biological Sciences 2 9%
Nursing and Health Professions 1 5%
Materials Science 1 5%
Unknown 10 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2017.
All research outputs
#19,440,618
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#5,443
of 9,883 outputs
Outputs of similar age
#244,885
of 317,208 outputs
Outputs of similar age from Environmental Science and Pollution Research
#110
of 207 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,208 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 207 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.