↓ Skip to main content

Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507)

Overview of attention for article published in Environmental Sciences Europe, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
16 Mendeley
Title
Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507)
Published in
Environmental Sciences Europe, March 2017
DOI 10.1186/s12302-017-0106-0
Pubmed ID
Authors

Maren Kruse-Plass, Frieder Hofmann, Ulrike Kuhn, Mathias Otto, Ulrich Schlechtriemen, Boris Schröder, Rudolf Vögel, Werner Wosniok

Abstract

In this commentary, we respond to a report of the EFSA GMO Panel (EFSA EFSA Supp Publ, 1) that criticises the outcomes of two studies published in this journal (Hofmann et al. Environ Sci Eur 26: 24, 2; Environ Sci Eur 28: 14, 3). Both publications relate to the environmental risk assessment and management of Bt-maize, including maize events MON810, Bt11 and maize 1507. The results of Hofmann et al. (Environ Sci Eur 26: 24, 2), using standardised pollen mass filter deposition measurements, indicated that the EFSA Panel model had underestimated pollen deposition and, hence, exposure of non-target organisms to Bt-maize pollen. The results implied a need for safety buffer distances in the kilometre range for protected nature reserve areas instead of the 20-30 m range recommended by the EFSA Panel. As a result, the EFSA Panel revised their model (EFSA EFSA J 13: 4127, 4), adopting the slope of the empirical data from Hofmann et al. The intercept, however, was substantially reduced to less than 1% at one point by introducing further assumptions based on the estimates of mainly panel members, citing possible 'uncertainty'. Hofmann et al. (Environ Sci Eur 28: 14, 3) published extensive empirical data regarding pollen deposition on leaves. These results were part of a larger 3-year study involving detailed measurements of pollen release, dispersal and deposition over the maize flowering period. The data collected in situ confirmed the previous predictions of Hofmann et al. (Environ Sci Eur 26: 24, 2). Mean levels and observed variability of pollen deposition on maize and four lepidopteran host plants exceeded the assumptions and disagreed with the conclusions of the EFSA Panel. The EFSA Panel reacted in a report (EFSA EFSA Supp Publ, 1) criticising the methods and outcomes of the two published studies of Hofmann et al. while reaffirming their original recommendations. We respond here point-by-point, showing that the critique is not justified. Based on our results on Urtica leaf pollen density, we confirm the need for specific environmental impact assessments for Bt-maize cultivation with respect to protected habitats within isolation buffer distances in the kilometre range.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 25%
Student > Master 3 19%
Student > Postgraduate 2 13%
Student > Ph. D. Student 2 13%
Student > Bachelor 2 13%
Other 2 13%
Unknown 1 6%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 31%
Environmental Science 4 25%
Agricultural and Biological Sciences 4 25%
Chemistry 2 13%
Unknown 1 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2017.
All research outputs
#20,411,380
of 22,961,203 outputs
Outputs from Environmental Sciences Europe
#569
of 586 outputs
Outputs of similar age
#268,341
of 308,002 outputs
Outputs of similar age from Environmental Sciences Europe
#12
of 12 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 586 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,002 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.