↓ Skip to main content

Biomechanical cadaveric comparison of patellar ligament suture protected by a steel cable versus a synthetic cable

Overview of attention for article published in Journal of Experimental Orthopaedics, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
18 Mendeley
Title
Biomechanical cadaveric comparison of patellar ligament suture protected by a steel cable versus a synthetic cable
Published in
Journal of Experimental Orthopaedics, March 2017
DOI 10.1186/s40634-017-0084-6
Pubmed ID
Authors

P. Bouget, C. Breque, J. S. Beranger, J. P. Faure, F. Khiami, T. Vendeuvre

Abstract

Purpose and hypothesis: Patellar ligament rupture is a rare disabling pathology requiring a surgical ligament suture protected by a frame. The gold standard is the steel cable, but its rigidity and the necessity of a surgical re-intervention for its removal render it unsatisfactory. The objective of this paper is to quantify the mechanical protection provided by the terylene® in comparison with steel. Twenty-four knees of 12 fresh frozen cadaveric subjects were divided into 2 homogeneous groups (terylene and steel) of 12 knees (mean age = 69.3 years). Proximal ligament repair was performed according to a three-tunnel transosseous reinsertion technique. Mechanical tests were performed in flexion to simulate movement of the knee. The interligament gap and the amplitude angulation of the knee were measured by a system of extensometer and optical goniometer. Mechanical analysis permitted calculation of flexion amplitude for a ligament gap of 1 and 2 mm taking as initial angle the adjusting angle of pretension of the protection frame. Study of deformations of frames was performed. Statistical analysis was performed with a Wilcoxon Mann Whitney test. There is no significant difference in protection of the ligament suture between the "terylene" and "steel" groups. Mean flexion amplitudes (mΔF) show no significant differences between the 2 groups for a distension of the suture of 1 mm (m ΔF terylene1 = 4.74 °; mΔF steel1 = 5.91°; p = 0.198) and 2 mm (mΔF terylene2 = 8.71°; mΔF steel2 = 10.41°; p = 0.114). Elastic deformation of terylene was significantly greater than that of steel (p = 0.0004). Suture protection of the patellar ligament by a terylene wire is not significantly different from that provided by steel frame. The elastic properties of terylene and absence of a need for re intervention to secure its removal lead us towards its use in acute ruptures of the patellar ligament. The main limits involve the properties of the chain extenders with no contraction/muscle shortening and partial dehydration of tendons and ligaments and the mean age of 69.3 years. Level 5.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 17%
Student > Doctoral Student 2 11%
Student > Ph. D. Student 2 11%
Other 1 6%
Student > Bachelor 1 6%
Other 2 11%
Unknown 7 39%
Readers by discipline Count As %
Medicine and Dentistry 6 33%
Engineering 2 11%
Agricultural and Biological Sciences 1 6%
Nursing and Health Professions 1 6%
Unknown 8 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2017.
All research outputs
#15,451,618
of 22,961,203 outputs
Outputs from Journal of Experimental Orthopaedics
#181
of 330 outputs
Outputs of similar age
#194,566
of 309,217 outputs
Outputs of similar age from Journal of Experimental Orthopaedics
#3
of 5 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 330 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,217 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.