↓ Skip to main content

Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator

Overview of attention for article published in AMB Express, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
13 Mendeley
Title
Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator
Published in
AMB Express, February 2017
DOI 10.1186/s13568-017-0330-4
Pubmed ID
Authors

Yu Sasano, Takahiro Kariya, Shogo Usugi, Minetaka Sugiyama, Satoshi Harashima

Abstract

As yeast is commonly used for RNA production, it is industrially important to breed strains with high RNA contents. The upstream activating factor (UAF) plays an important role in transcription of ribosomal RNA (rRNA), a major constituent of intracellular RNA species. Here, we targeted the essential rRNA transcription regulator Rrn5 of Saccharomyces cerevisiae, a component of the UAF complex, and disrupted the genomic RRN5 gene using a helper plasmid carrying an RRN5 gene. Then we isolated nine suppressor mutants (Sup mutants) of RRN5 gene disruption, causing deficiency in rRNA transcription. The Sup mutants had RNA contents of approximately 40% of the wild type level and expansion of rDNA repeats to ca. 400-700 copies. Reintroduction of a functional RRN5 gene into Sup mutants caused a reduction in the number of rDNA repeats to close to the wild type level but did not change RNA content. However, we found that reintroduction of RRN5 into the Sup16 mutant (in which the FOB1 gene encoding the rDNA replication fork barrier site binding protein was disrupted) resulted in a significant increase (17%) in RNA content compared with wild type, although the rDNA repeat copy number was almost identical to the wild type strain. In this case, upregulated transcription of non-transcribed spacers (NTS) occurred, especially in the NTS2 region; this was likely mediated by RNA polymerase II and accounted for the increased RNA content. Thus, we propose a novel breeding strategy for developing high RNA content yeast by harnessing the essential rRNA transcription regulator.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Student > Bachelor 2 15%
Researcher 2 15%
Student > Master 2 15%
Student > Doctoral Student 1 8%
Other 0 0%
Unknown 3 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 31%
Agricultural and Biological Sciences 4 31%
Immunology and Microbiology 1 8%
Engineering 1 8%
Unknown 3 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2017.
All research outputs
#15,440,760
of 22,950,943 outputs
Outputs from AMB Express
#445
of 1,237 outputs
Outputs of similar age
#256,749
of 420,304 outputs
Outputs of similar age from AMB Express
#23
of 58 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,237 research outputs from this source. They receive a mean Attention Score of 2.8. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,304 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.