↓ Skip to main content

In vivo imaging reveals mature Oligodendrocyte division in adult Zebrafish

Overview of attention for article published in Cell Regeneration, June 2021
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
11 Mendeley
Title
In vivo imaging reveals mature Oligodendrocyte division in adult Zebrafish
Published in
Cell Regeneration, June 2021
DOI 10.1186/s13619-021-00079-3
Pubmed ID
Authors

Suqi Zou, Bing Hu

Abstract

Whether mature oligodendrocytes (mOLs) participate in remyelination has been disputed for several decades. Recently, some studies have shown that mOLs participate in remyelination by producing new sheaths. However, whether mOLs can produce new oligodendrocytes by asymmetric division has not been proven. Zebrafish is a perfect model to research remyelination compared to other species. In this study, optic nerve crushing did not induce local mOLs death. After optic nerve transplantation from olig2:eGFP fish to AB/WT fish, olig2+ cells from the donor settled and rewrapped axons in the recipient. After identifying these rewrapping olig2+ cells as mOLs at 3 months posttransplantation, in vivo imaging showed that olig2+ cells proliferated. Additionally, in vivo imaging of new olig2+ cell division from mOLs was also captured within the retina. Finally, fine visual function was renewed after the remyelination program was completed. In conclusion, our in vivo imaging results showed that new olig2+ cells were born from mOLs by asymmetric division in adult zebrafish, which highlights the role of mOLs in the progression of remyelination in the mammalian CNS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 18%
Student > Master 2 18%
Student > Postgraduate 1 9%
Unknown 6 55%
Readers by discipline Count As %
Neuroscience 2 18%
Agricultural and Biological Sciences 2 18%
Biochemistry, Genetics and Molecular Biology 1 9%
Unknown 6 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 June 2021.
All research outputs
#18,807,229
of 23,308,124 outputs
Outputs from Cell Regeneration
#116
of 159 outputs
Outputs of similar age
#323,377
of 448,096 outputs
Outputs of similar age from Cell Regeneration
#6
of 10 outputs
Altmetric has tracked 23,308,124 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 159 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 3rd percentile – i.e., 3% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,096 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.